Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow10}\frac{lgx-1}{x-10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)
Ta có : \(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x=\lim\limits_{x\rightarrow+\infty}\left(1-\frac{1}{1+x}\right)^x\)
Đặt \(-\frac{1}{1+x}=\frac{1}{t}\Rightarrow\begin{cases}x=-\left(1+t\right)\\x\rightarrow+\infty;t\rightarrow-\infty\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow-\infty}\left(1+\frac{1}{t}\right)^{-\left(1+t\right)}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)^{1+t}}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)\left(1+\frac{1}{t}\right)^t}=\frac{1}{1.e}=\frac{1}{e}\)
\(L=\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}=\lim\limits_{x\rightarrow0}\frac{\left(e^x-1\right)\left(\sqrt{x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\left[\frac{e^x-1}{x}.\left(\sqrt{x+1}-1\right)\right]=1.0=0\)
Đặt \(t=x-e\Rightarrow\begin{cases}x=t+e\\x\rightarrow e;t\rightarrow0\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{\ln\left(t+e\right)-\ln e}{t}=\lim\limits_{t\rightarrow0}\frac{\ln\left(\frac{t+e}{e}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{\ln\left(1+\frac{t}{e}\right)}{\frac{t}{e}}\right]=\frac{1}{e}\)
\(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x+1}{x-2}\right)^{2x-1}=\lim\limits_{x\rightarrow+\infty}\left(1+\frac{3}{x-2}\right)^{2x-1}\)
Đặt \(\begin{cases}\frac{3}{x-2}=\frac{1}{t}\Rightarrow x=3t+2\\x\rightarrow+\infty;t\rightarrow+\infty\end{cases}\)
\(L=\lim\limits_{x\rightarrow+\infty}\left(1+\frac{1}{t}\right)^{6t+3}=\lim\limits_{x\rightarrow+\infty}\left\{\left[\left(1+\frac{1}{t}\right)^t\right]^6.\left(1+\frac{1}{t}\right)^3\right\}=e^6.1^3=e^6\)
\(L=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{x^3.\frac{2}{x^2}}=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+x^3\right)}{x^3}.\frac{x^3}{2}\right]=1.0=0\)
\(L=\lim\limits_{x\rightarrow0}\frac{\ln x-1}{\tan x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{\frac{\sin x}{\cos x}}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{2x.\frac{\sin x}{x}.\frac{1}{2\cos x}}\)
\(=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+2x\right)}{2x}.\frac{1}{\frac{\sin x}{x}}.2\cos x\right]=1.\frac{1}{1}.2.1=2\)
\(L=\lim\limits_{x\rightarrow0}\frac{e^x-e^{-x}}{\sin x}=\lim\limits_{x\rightarrow0}\frac{e^x-\frac{1}{e^x}}{\sin x}=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{e^x\sin x}=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{2x.\frac{\sin x}{2x}.e^x}\)
\(=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{2x}.\frac{1}{\frac{\sin x}{x}}.\frac{2}{e^x}=1.\frac{1}{1}.\frac{2}{1}=2\)
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {9 + \frac{1}{x}} \right)}}{{x\left( {3 - \frac{4}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{9 + \frac{1}{x}}}{{3 - \frac{4}{x}}} = \frac{{9 + 0}}{{3 - 0}} = 3\)
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {7 - \frac{{11}}{x}} \right)}}{{x\left( {2 + \frac{3}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{7 - \frac{{11}}{x}}}{{2 + \frac{3}{x}}} = \frac{{7 - 0}}{{2 + 0}} = \frac{7}{2}\)
c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {1 + \frac{1}{{{x^2}}}} = \sqrt {1 + 0} = 1\)
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to - \infty } - \sqrt {1 + \frac{1}{{{x^2}}}} = - \sqrt {1 + 0} = - 1\)
e) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x - 6 < 0,x \to {6^ - }\end{array} \right.\)
Do đó, \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}} = - \infty \)
g) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x + 7 > 0,x \to {7^ + }\end{array} \right.\)
Do đó, \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}} = + \infty \)
a) Ta có \(t = \frac{1}{x},\) nên khi x tiến đến 0 thì t tiến đến dương vô cùng do đó
\(\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}}} = \mathop {\lim }\limits_{t \to + \infty } {\left( {1 + \frac{1}{t}} \right)^t} = e\)
b) \(\ln y = \ln {\left( {1 + x} \right)^{\frac{1}{x}}} = \frac{1}{x}\ln \left( {1 + x} \right)\)
\(\mathop {\lim }\limits_{x \to 0} \ln y = \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\)
c) \(t = {e^x} - 1 \Leftrightarrow {e^x} = t + 1 \Leftrightarrow x = \ln \left( {t + 1} \right)\)
\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = \mathop {\lim }\limits_{t \to 0} \frac{t}{{\ln \left( {t + 1} \right)}} = 1\)
Đặt \(t=x-10\Rightarrow\begin{cases}x=t+10\\x\rightarrow t;t\rightarrow0\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{lg\left(t+10\right)-lg10}{t}=\lim\limits_{t\rightarrow0}\frac{lg\left(\frac{t+10}{10}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{lg\left(1+\frac{t}{10}\right)}{\frac{t}{10}}.\frac{1}{10}\right]=\frac{1}{10}\)