K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

Vì phân số nào có mẫu lớn hơn thì phân số ấy nhỏ hơn

     Mà trong 2 phân số:\(\frac{n}{n+8};\frac{n-2}{n+9}\)

Thì n+8<n+9

\(\Rightarrow\frac{n-2}{n+9}< \frac{n}{n+8}\)

11 tháng 5 2016

Điều kiện:  \(n\notin\left\{-8,-9\right\}\)

Với mọi \(n\ne-8,n\ne-9\) ta có: 

\(\begin{cases}n>n-2\\n+8< n+9\end{cases}\)

=> Phân số \(\frac{n}{n+8}\) có tử số lớn hơn và mẫu số nhỏ hơn phân số \(\frac{n-2}{n+9}\) nên \(\frac{n}{n+8}>\frac{n-2}{n+9}\)

 
8 tháng 5 2016

*n=1 thấy: 2=1x4/2 =>* đúng

Giả sử * đúng với n=k, ta có: 2+5+8+...+3k-1=k(3k+1)/2

=> 2+5+8+...+(3k-1)+(3k+2)=k(3k+1)/2+3k+2=(k(3k+1)+6k+4)/2

=> (k(3k+1)+3k+3k+4)/2=(k(3k+4)+3k+4)/2=(k+1)(3k+4)/2

tức là  2+5+8+...+3k+1=(k+1)(3k+4)/2

=> * đúng với n=k+1

=> Theo nguyên lí quy nạp => * đúng với mọi n thuộc N*

Chuyên toán sao học quy nạp sớm thế. 

31 tháng 3 2016

phục bạn rồi lớp 6 học cái này thì chỉ có h/s giỏi lớp 6 mới làm chứ bài này không phải của lớp 6 đâu

31 tháng 3 2016

tớ học rùi

2 tháng 4 2016

A= 1/2+ 1/4+ 1/8+ 1/2n

=>2A = 1 + 1/2 +1/4+ 1/2n-1

=>A = 1 - 1/2n-1

=> A < 1

 B= 4/(5*2!) + 4/(5*3!)+...+4/(5*n!)

=>5/4* B =1/2!+1/3!+...+1/n!<1

=>B < 0,8

mình nha các bạn !!!

2 tháng 4 2016

A=1/2+1/4+1/8+1/2n

=>2A=1+1/2+1/4+1/2n-1

=>A=1-1/2n-1

=>A<1

25 tháng 5 2020

a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)

+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng

=> (@@) đúng với n = 1 

+) G/s (@@) đúng cho đến n 

+) Ta chứng minh (@@ ) đúng với n + 1 

Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)

=>  (@@) đúng với n + 1

Vậy (@@ ) đúng với mọi số tự nhiên n khác 0

26 tháng 5 2020

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)

Ta chứng minh (@) đúng  với n là số tự nhiên khác 0 quy nạp theo n 

+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng 

=> (@) đúng với n = 1 

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.

5 tháng 2 2017

áp dụng đinh lý Py - ta go trong tam giác ABc ta có 

AB^2 - AC^2 = BC^2 

=> n = 2 

đáp số n = 2

5 tháng 2 2017

1, 

x/y = 2 => x= 2y 

ta lại có x+ 2y + 8 = 0 

=> 2y + 2y + 8 = 0 

=> 4y = - 8 

=> y = - 2 

=> x = - 4 

vậy x- y = \(-4-\left(-2\right)\)= - 2 

đáp số x- y = -2