K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

ko bít làm

9 tháng 5 2016

đợi đang nghĩ

27 tháng 2 2021

Áp dụng hệ thức Vi-ét ta có:
y1+y2= 3x1+3x2=3(x1+x2)
=\(\dfrac{-3b}{a}\)
y1y2=\(\dfrac{9c}{a}\)
Ta có pt x^2 +\(\dfrac{3b}{a}x+\dfrac{9c}{a}=0\)

8 tháng 3 2022

\(1+\sqrt{2}\) kia là cái j nhỉ

8 tháng 3 2022

nghiệm thứ nhất

tìm nghiệm thứ 2

17 tháng 3 2023

`a) 7x^2 - 2x + 3 = 0`

`(a = 7; b = -2; c = 3)`

`Δ = b^2 - 4ac = (-2)^2 - 4.7.3 = -80 < 0`

`=>` phương trình vô nghiệm

`b) 6x^2 + x + 5 = 0`

`(a = 6;b = 1;c = 5)`

`Δ = b^2 - 4ac = 1^2 - 4.6.5 = -119 < 0`

`=>` phương trình vô nghiệm

`c) 6x^2 + x - 5 = 0`

`(a = 6;b=1;c=-5)`

`Δ = b^2 - 4ac = 1^2 - 4.6.(-5) = 121 > 0`

`=>` phương trình có 2 nghiệm phân biệt

`x_1 = (-b + sqrt{Δ})/(2a) = (-1+ sqrt{121})/(2.6) = (-1+11)/12 = 10/12 = 5/6`

`x_2 = (-b - sqrt{Δ})/(2a) = (-1- sqrt{121})/(2.6) = (-1-11)/12 = -12/12 = -1`

Vậy phương trình có 1 nghiệm `x_1 = 5/6; x_2 = -1`

 

17 tháng 3 2023

ủa, mấy bài đó tương tự như ct mà:

\(7x^2-2x+3=0\) \(\left\{{}\begin{matrix}a=7\\b=-2\\c=3\end{matrix}\right.\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.7.3=-80\)

Vì \(\Delta< 0\) \(\Rightarrow\) pt vô nghiệm

9 tháng 11 2018

Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)

\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)

=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)

5 tháng 2 2022

a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)

Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)

Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.

Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.

b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)

Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)

Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)

Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):

\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)

Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)

Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)

27 tháng 12 2023

Đặt \(f\left(x\right)=ax^2+bx+c\).

\(f\left(0\right)=c;f\left(1\right)=a+b+c\)

Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).

19 tháng 3 2023

Thay `b=5a+2c` vào `ax^2+bx+c=0`:

`ax^2+(5a+2c)x+c=0`

`=>Delta=(5a+2c)^2-4ac`

`=25a^2+20ac+4c^2-4ac`

`=25a^2+16ac+4c^2`

`=9a^2+(16a^2+16ac+4c^2)`

`=9a^2+(4a+2c)^2>=0`

`=>` ĐPCM

10 tháng 6 2021

giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)

\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)

Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)

\(\Rightarrow17a+3b+c=6a+b=0\)

\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)

Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)

pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)