Giải bất phương trình :
\(\left(\sqrt{3+\sqrt{8}}\right)^x+\left(\sqrt{3-\sqrt{8}}\right)^x\le34\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
Đặt \(t=\sqrt{x}-2\) , pt trở thành
\(\left(t+1\right)^3+\left(t-1\right)^3=8t^3\Leftrightarrow t^3+3t^2+3t+1+t^3-3t^2+3t-1=8t^3\)
\(\Leftrightarrow6t^3-6t=0\Leftrightarrow t\left(t-1\right)\left(t+1\right)=0\)
=> t = 0 hoặc t = 1 hoặc t = -1
Từ đó suy ra x.
Giải bất phương trình: \(\left|x^2-\sqrt{x-3}\right|< \left|x^2-2\right|+\left|2-\sqrt{x-3}\right|\)
Lời giải:ĐK: $x>3$
Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Do đó:
$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$
Dấu "=" xảy ra khi:
$(x^2-2)(2-\sqrt{x-3})\geq 0$
$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)
$\Leftrightarrow x< 7$
Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là
$[7;+\infty)\cup (-\infty;3]$
Lời giải:ĐK: $x>3$
Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Do đó:
$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$
Dấu "=" xảy ra khi:
$(x^2-2)(2-\sqrt{x-3})\geq 0$
$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)
$\Leftrightarrow x< 7$
Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là
$[7;+\infty)\cup (-\infty;3]$
ĐKXĐ: \(x\ge1\).
Phương trình đã cho tương đương:
\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)
\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).
Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).
Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).
Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).
Vậy...
Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!
Lời giải:
ĐK: $x,y,z\geq 0$
Áp dụng BĐT Cô-si:
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)
Cộng theo vế và thu gọn:
\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)
Dấu "=" xảy ra khi $x=y=z$
Thay vào pt $(1)$ thì suy ra $x=y=z=1$
Vì \(\left(\sqrt{3+\sqrt{8}}\right)^x.\left(\sqrt{3-\sqrt{8}}\right)^x=1\)
nên đặt \(t=\left(\sqrt{3+\sqrt{8}}\right)^x>0\)
\(\Rightarrow\left(\sqrt{3-\sqrt{8}}\right)^x=\frac{1}{t}\)
Bất phương trình trở thành : \(t+\frac{1}{t}\le34\Leftrightarrow t^2-34t+1\le0\)
\(\Leftrightarrow17-6\sqrt{8}\le t\le17+6\sqrt{8}\)
\(\Leftrightarrow\left(\sqrt{3+\sqrt{8}}\right)^{-4}\le\left(\sqrt{3+\sqrt{8}}\right)^x\le\left(\sqrt{3+\sqrt{8}}\right)^4\)
Vậy tập nghiệm của bất phương trình là \(S=\left[-4;4\right]\)