Chứng minh
\(3.x^4+5^5.x-2\)
vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x khác 1 nhân cả hai vế với (x-1) khác 0
\(\left(x-1\right)\left(x^6+x^5+..+1\right)=x^7-1=0\)
\(x^7=1\)
với x>1 hiển nhiên VT>1 => vô nghiệm
với 0<=x<1 hiển nhiên VT<1
Với x<0 do số mũ =7 lẻ => VT<0<1
Kết luận: PT x^7-1=0 có nghiệm duy nhất x=1 => (......) khác 0 với mọi x
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
Ta có:
\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
Mà:
\(x^2+1>0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vậy pt vô nghiệm
Nếu đa thức trên có nghiệm là n
<=>(n-4)2+(n+5)2=0
<=>(n-4)2=0 và (n+5)2=0
<=>n-4=0 và n+5=0
<=>n=4 và n=-5 (vô lý)
Vậy đa thức trên vô nghiệm
...=x^4+x^3+x^2+5x^2+5x+5=x^(x^2+x+1)+5(x^2+x+1)=(x^2+5)(x^2+x+1)>0 (pt vô nghiệm)
\(\Leftrightarrow x^4+x^3+x^2+5x^2+5x+5=0\)
\(\Leftrightarrow x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow x^2+x+1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{3}{4}\left(l\right)\)
hay \(x^2+5=0\Leftrightarrow x^2=-5\left(l\right)\)
\(v...S=\varnothing\)
ta có : p(x) = 0
x^3 - x+ 5 = 0
x^3 - x =-5
mà x^3 khác -5
=> vô nghiệm
\(P\left(x\right)=5x^5+5x^4-2x^2+5x^2-x^5-4x^4+1-4x^5=x^4+3x^2+1\)
Mà \(x^4\ge0;3x^2\ge0=>x^4+3x^2+1\ge1>0\) nên \(P\left(x\right)\) vô nghiệm
Hok tốt nha !
P(x) = 5x5 + 5x4 - 2x2 + 5x2 - x5 - 4x4 + 1 - 4x5
P(x) = (5x5 - x5 - 4x5) + (5x4 - 4x4) - (2x2 - 5x2) + 1
P(x) = x4 + 3x2 + 1
Ta có: x4 \(\ge\)0 \(\forall\)x; 3x2 \(\ge\)0 \(\forall\)x
=> x4 + 3x2 + 1 \(\ge\)1 \(\forall\)x
=> P(x) \(\ne\)0
=> P(x) vô nghiệm
gọi 3.x4+55.x-2 = M(x)
3.x4+55.x-2=> x.(3.x3+55)-2
TH1: x=0 TH2: x>0 TH3: x<0
=> M(x)= 0 => M(x)>0 => M(x)<0
vậy M(x) vô nghiệm