K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

Đầu tiên ta chứng minh \(BN\perp CI.\) Thực vậy, theo định lý Ta-let (Thales) ta có 

\(\frac{CN}{AB}=\frac{CM}{BM}=\frac{CD}{BI}\to\frac{CN}{BC}=\frac{BC}{BI}\to\Delta CBN\sim\Delta BIC\left(c.g.c\right)\to\angle CBN=\angle CIB\to\angle BKI=90^{\circ}.\)
 

Vậy \(BN\perp CI.\)

a)  Vì \(MC=\frac{a}{3}\to BM=\frac{2a}{3}.\)  Theo định lý Thales, ta có \(\frac{CN}{AB}=\frac{CM}{BM}\to\frac{CN}{a}=\frac{1}{2}\to CN=\frac{a}{2}.\)
Xét tam giác vuông \(BCN\) có \(BC=a,CN=\frac{a}{2},\) theo hệ thức liên hệ giữa độ dài cạnh và đường cao \(\frac{1}{CK^2}=\frac{1}{BC^2}+\frac{1}{CN^2}=\frac{1}{a^2}+\frac{1}{\left(\frac{a}{2}\right)^2}=\frac{5}{a^2}\to CK=\frac{a}{\sqrt{5}}.\)

b) Trên tia đối của tia DC lấy điểm P sao cho DP=BM. Suy ra \(\Delta BAM=\Delta DAP\) (cạnh huyền và cạnh góc vuông). Suy ra \(AP=AM.\)  Xét tam giác vuông \(APN\) với đường cao AD, ta có \(\frac{1}{AP^2}+\frac{1}{AN^2}=\frac{1}{AD^2}\to\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{a^2}\)  không đổi. 

Mặt khác, theo định lý Thales, ta có 

\(\frac{AB}{CN}=\frac{BM}{CM}=\frac{BC-CM}{CM}=\frac{BC}{CM}-1=\frac{AB}{CM}-1\to\frac{AB}{CM}-\frac{AB}{CN}=1\to\frac{1}{CM}-\frac{1}{CN}=\frac{1}{AB}\)   không đổi.   (ĐPCM)

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
Do $AB\parallel CN$ nên áp dụng định lý Talet:

$\frac{AM}{MN}=\frac{AB}{CN}=\frac{DC}{CN}$

$\Rightarrow \frac{AM}{AM+MN}=\frac{DC}{DC+CN}$ hay $\frac{AM}{AN}=\frac{DC}{DN}$

$\Rightarrow AM=\frac{AN.DC}{DN}$

Do đó:

$\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{DN^2}{AN^2.DC^2}+\frac{1}{AN^2}$

$=\frac{1}{AN^2}.\frac{DN^2+DC^2}{DC^2}$

$=\frac{1}{AN^2}.\frac{DN^2+AD^2}{DC^2}$

$=\frac{1}{AN^2}.\frac{AN^2}{DC^2}$ (theo định lý Pitago)

$=\frac{1}{DC^2}$ 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Hình vẽ:

31 tháng 12 2017

Có AMHN là hình vuông (gt)

=> A2=90 độ ( t/c) => NAD=90độ-DAM    

Có ABCD là hình vuông (gt)

=> A1=90 độ (t/c)=> BAM=90độ-DAM    

Suy ra góc NAD=BAM

Xét 2 tam giác AND và AMB

Có AN=AM ( vì AMHN là hình vuông )

     AD=AB ( vì ABCD là hình vuông )

    góc NAD=BAM ( chứng minh trên )

 =>  Tam giác AND=AMB (c.g.c)  =>  Góc  ADN=B mà B= 90 độ (t/c) hình vuông => ADN=B=90 độ)

 Suy ra góc ADN+ADC = 90+90=180 =>  2 góc kề bù   

=>  N.D.C thẳng hàng 

a b c d m h n e f

31 tháng 12 2017

ai v ???

14 tháng 5 2022

Tham khảo: \(I-->N\) nhé bạn:D

14 tháng 5 2022

=)))))))

cảm ơn bạn