Cho (O;R) và một điểm A ở ngoài đường tròn. Qua A kẻ các tiếp tuyến AB và AC với đường tròn ( B và C là các tiếp điểm).
a)Chứng minh: tứ giác ABOC nội tiếp
b) kẻ đường kính BD của (O), vẽ CK vuông góc với BD tại K. Chứng minh: góc AOC= góc BDC
c) Chứng minh: AC.CD=AO.CK
d) AD cắt CK ở I.Chứng minh I là trung điểm của CK ( mọi người giúp mk câu này vs nha, cảm ơn nhiều)
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2)suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
hay BC\(\perp\)CD(4)
Từ (3) và (4) suy ra OA//CD
hay \(\widehat{AOC}=\widehat{BDC}\)