K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

Gọi ƯCLN(3n+4; 5n+7) là d. Ta có:

3n+4 chia hết cho d => 15n+20 chia hết cho d

5n+7 chia hết cho d => 15n+21 chia hết cho d

=> 15n+21-(15n+20) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> d = 1

=> ƯCLN(3n+4; 5n+7) = 1

=> 3n+4 và 5n+7 nguyên tố cùng nhau (Đpcm)

23 tháng 12 2023

Gọi UWCLN (5n+7;3n+4)=d(dϵN*)
=>(5n+7)⋮d=>3(5n+7)⋮d=>(15n+21)⋮d
=>(3n+4)⋮d=>5(3n+4)⋮d=>(15n+20)⋮d
=>[(25n+21)-(15n+20)]⋮d
=>1⋮d mà dϵN*=>d=1
=>UCLN(5n+7;3n+4)=1
vậy 5n+7 và 3n+4 là 2 số nguyên tố cùng nhau
Chúc bạn học zỏi

24 tháng 12 2023

thank you 

mình cũng chúc bạn

 

15 tháng 12 2017

Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )

=> 2n+3 và 3n+4 đều chia hết cho d

=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d

=> 6n+9 và 6n+8 đều chia hết cho d

=> 6n+9-(6n+8) chia hết cho d        hay 1 chia hết cho d 

=> d = 1 ( vì d thuộc N sao )

=> ƯCLN của 2n+3 và 3n+4 là 1

=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

k mk nha

15 tháng 12 2017

thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<

9 tháng 11 2017

Gọi a là ước chung của ( 2n+1 ) và ( 3n +1)

Suy ra ( 2n+1 ) chia hết cho a và ( 3n +1) chia hết cho a

3. ( 2n+1 )-2. ( 3n +1) chia hết cho a

Hay 1 chia hết cho a  suy ra a=1. Vậy ƯCLN của 2 số đó =1

9 tháng 11 2017

Ta có :

gọi k là UCLN  của 2n+1 và 3n+1

=> 3(2n+1) \(⋮k\)

=> 2(3n+1)\(⋮k\)

=> 3(2n+1)-2(3n+1)\(⋮k\)

=> 1\(⋮k\)

Vì k >o 

=> k=1

=> đpcm

14 tháng 7 2016

a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

14 tháng 7 2016

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

5 tháng 1 2017

mk lấy ví dụ n =1; 2n+5 = 2x1+5= 7; 3n+7=3x1+7 = 10;

          ƯCLN (7;10) = 1

5 tháng 1 2017

hình như bạn làm sai rồi

a: Gọi d là ước chung lớn nhất của 3n+4 và n+1

=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)

=>\(3n+4-3n-3⋮d\)

=>\(1⋮d\)

=>d=1

=>n+1 và 3n+4 là hai số nguyên tố cùng nhau

b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7

=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)

=>\(35n+50-35n-49⋮d\)

=>\(1⋮d\)

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4

=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)

=>\(42n+9-42n-8⋮d\)

=>\(1⋮d\)

=>d=1

=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau

9 tháng 11 2023

thanks

 

24 tháng 11 2018

Gọi d là ƯCLN(5n+3;3n+2)

=> 5n+3 chia hết cho d

=> 3n+2 chia hết cho d

=> 3(5n+3)-5(3n+2) chia hết cho d

=> 1 chia hết cho d

=> d E {-1;1}

Vậy: 5n+3 và 3n+2 luôn nguyên tố cùng nhau (ĐPCM)