Cho hàm số : \(f\left(x\right)=\frac{9^x}{9^x+3};x\in R\)
Chứng minh rằng nếu \(a+b=1\) thì \(f\left(a\right)+f\left(b\right)=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int\limits^9_0f\left(x\right)dx=F\left(9\right)-F\left(0\right)\)
\(\Rightarrow F\left(9\right)-F\left(0\right)=9\)
\(\Rightarrow F\left(9\right)=9+F\left(0\right)=9+3=12\)
\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)
\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)
\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)
Do đó:
\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)
\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)
Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)
Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho
Do \(\frac{3}{4}\) là số hữu tỉ không nguyên nên điều kiện xác định của hàm số này là :
\(9-10x^2+x^4\ge0\Leftrightarrow\left(x+3\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow x\le-3\) V \(-1\le x\le1\) V \(x\ge3\)
Suy ra tập xác định là \(D=\left(-\infty;-3\right)\cup\left[-1;1\right]\cup\) [3;\(+\infty\))
\(h\left(x\right)=x^2-4x+5+m\)
\(g\left(x\right)=\left|h\left(x\right)\right|=\left|f\left(x\right)+m\right|=\left|x^2-4x+5+m\right|\)
\(h\left(0\right)=5+m;h\left(4\right)=5+m;h\left(2\right)=1+m\)
TH1: \(1+m>0\Leftrightarrow m>-1\)
\(max=5+m=9\Leftrightarrow m=4\left(tm\right)\)
TH2: \(5+m< 0\Leftrightarrow m< -5\)
\(max=-1-m=9\Leftrightarrow m=-10\left(tm\right)\)
TH3: \(5+m>0>1+m\Leftrightarrow-5< m< -1\)
Nếu \(5+m< -1-m\Leftrightarrow m< -3\)
\(max=-1-m=9\Leftrightarrow m=-10\left(tm\right)\)
Nếu \(5+m=-1-m\Leftrightarrow m=-3\)
\(max=5+m=2\ne9\)
\(\Rightarrow m=-3\) không thỏa mãn yêu cầu bài toán
Nếu \(5+m>-1-m\Leftrightarrow m>-3\)
\(max=5+m=9\Leftrightarrow m=4\left(tm\right)\)
Vậy \(m=4;m=-10\)
a) ĐKXĐ: \({x^2} - 4 \ne 0 \Leftrightarrow x \ne \pm 2\)
Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ { \pm 2} \right\}\).
Hàm số \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng \(\left( { - \infty ; - 2} \right),\left( { - 2;2} \right)\) và \(\left( {2; + \infty } \right)\).
b) ĐKXĐ: \(9 - {x^2} \ge 0 \Leftrightarrow - 3 \le x \le 3\)
Vậy hàm số có TXĐ: \(D = \left[ { - 3;3} \right]\).
Hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là hàm căn thức nên nó liên tục trên khoảng \(\left( { - 3;3} \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \sqrt {9 - {x^2}} = \sqrt {9 - {3^2}} = 0 = f\left( 3 \right)\)
\(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {3^ + }} \sqrt {9 - {x^2}} = \sqrt {9 - {{\left( { - 3} \right)}^2}} = 0 = f\left( { - 3} \right)\)
Vậy hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là liên tục trên đoạn \(\left[ { - 3;3} \right]\).
c) ĐKXĐ: \(\sin x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)
Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).
Hàm số \(h\left( x \right) = \cos x + \tan x\) là hàm lượng giác nên nó liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right),k \in \mathbb{Z}\).
a: \(f\left(x\right)=\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}=\left|x-3\right|\)
\(f\left(-1\right)=\left|-1-3\right|=4\)
\(f\left(5\right)=\left|5-3\right|=\left|2\right|=2\)
b: f(x)=10
=>\(\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-7\end{matrix}\right.\)
c: \(A=\dfrac{f\left(x\right)}{x^2-9}=\dfrac{\left|x-3\right|}{\left(x-3\right)\left(x+3\right)}\)
TH1: x<3 và x<>-3
=>\(A=\dfrac{-\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{-1}{x+3}\)
TH2: x>3
\(A=\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)
Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)
Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).
Đơn giản là bạn vẽ cái hàm bậc 4 đó ra và cho -m và -m-10 cắt thôi. Vì -m-10<-m nên -m-10 sẽ nằm ở dưới, còn -m nằm trên. Nên -m sẽ cắt 2 điểm và -m-10 cắt 4 điểm cho ta 6 điểm. Ngoài ra k còn trường hợp nào khác mà -m và -m-10 cắt thỏa mãn
Do \(a+b=1\Rightarrow b=1-a\)
Suy ra : \(f\left(b\right)=f\left(1-a\right)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=1\)