phân tích đa thức thành nhân tử
1) 32 x^4 + 1 2) x^8 + 3x^4 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+x-2=3x^2-2x+3x-2=x\left(3x-2\right)+\left(3x-2\right)=\left(x+1\right)\left(3x-2\right)\)
\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(x^2+2xy-15y^2=x^2-3xy+5xy-15y^2=x\left(x-3y\right)+5y\left(x-3y\right)=\left(x+5y\right)\left(x-3y\right)\)
1) \(2xy^3-6x^2+10xy\)
\(=2x.y^3-2x.3x+2x.5y\)
\(=2x\left(y^3-3x+5y\right)\)
\(=2x[y\left(y^2-5\right)-3x]\)
1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)
2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)
3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
1) \(x^2-3x+2=\left(x^2-x\right)-\left(2x-2\right)=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
2) \(x^2-x-6=\left(x^2-3x\right)+\left(2x-6\right)=x\left(x-3\right)+2\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
3) \(x^2+7x+12=\left(x^2+3x\right)+\left(4x+12\right)=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)
2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)
3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
1: Đa thức này ko phân tích được nha bạn
2: \(x^2+8x+7\)
\(=x^2+x+7x+7\)
\(=x\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(x+7\right)\)
3: \(x^2-6x-16\)
\(=x^2-8x+2x-16\)
\(=x\left(x-8\right)+2\left(x-8\right)\)
\(=\left(x-8\right)\left(x+2\right)\)
4: \(4x^2-8x+3\)
\(=4x^2-2x-6x+3\)
\(=2x\left(2x-1\right)-3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(2x-3\right)\)
5: \(3x^2-11x+6\)
\(=3x^2-9x-2x+6\)
\(=3x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(3x-2\right)\)
bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)
Bài 2:
1: \(x^2y^2-8-1\)
\(=x^2y^2-9\)
\(=\left(xy-3\right)\left(xy+3\right)\)
2: \(x^3y-2x^2y+xy-xy^3\)
\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)
\(=xy\left(x^2-2x+1-y^2\right)\)
\(=xy\left[\left(x-1\right)^2-y^2\right]\)
\(=xy\left(x-1-y\right)\left(x-1+y\right)\)
3: \(x^3-2x^2y+xy^2\)
\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)
\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
4: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
5: \(x^2+2x-4y^2+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
6: \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
Ta có: \(1+6x-6x^2-x^3\)
\(=-x^3-6x^2+6x+1\)
\(=\left(-x^3+1\right)-6x\left(x-1\right)\)
\(=-\left(x-1\right)\left(x^2+x+1\right)-6x\cdot\left(x-1\right)\)
\(=\left(x-1\right)\left(-x^2-x-1-6x\right)\)
\(=-\left(x-1\right)\left(x^2+7x+1\right)\)
1)
\(y^2-4y+4-x^2\\ =\left(y-2\right)^2-x^2\\ =\left(y-2-x\right)\left(y-2+x\right)\)
2)
\(8x^3-12x^2+6x-2\\ =2\left(4x^3-6x^2+3x-1\right)\\ =2\left(4x^3-4x^2-2x^2+2x+x-1\right)\\ =2\left(4x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\right)\\ =2\left(x-1\right)\left(4x^2-2x+1\right)\)
1) \(y^2-4y+4-x^2\)
\(=\left(y^2-4y+4\right)-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-2-x\right)\left(y-2+x\right)\)
2) \(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
\(=\left(2x-1\right)\left(2x-1\right)\left(2x-1\right)\)