Tìm giới hạn sau :
\(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{3x-2}}{x^2-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tất cả đều ko phải dạng vô định, bạn cứ thay số vào tính thôi:
\(a=\frac{sin\left(\frac{\pi}{4}\right)}{\frac{\pi}{2}}=\frac{\sqrt{2}}{\pi}\)
\(b=\frac{\sqrt[3]{3.4-4}-\sqrt{6-2}}{3}=\frac{0}{3}=0\)
\(c=0.sin\frac{1}{2}=0\)
a: \(\lim\limits_{x\rightarrow2}\dfrac{1-\sqrt{x^2+3}}{-x^2+3x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+3}-1}{x^2-3x+2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt{2^2+3}-1}{2^2-3\cdot2+2}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2}\sqrt{2^2+3}-1=\sqrt{7}-1>0\\\lim\limits_{x\rightarrow2}2^2-3\cdot2+2=0\end{matrix}\right.\)
b: \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{4x-1}+3}{x^2-4}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{4x-1-9}{\sqrt{4x-1}-3}\cdot\dfrac{1}{x^2-4}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{4x-10}{\sqrt{4x-1}-3}\cdot\dfrac{1}{\left(x-2\right)\left(x+2\right)}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2}\dfrac{4x-10}{\sqrt{4x-1}-3}=\dfrac{4\cdot2-10}{\sqrt{4\cdot2-1}-3}=\dfrac{-2}{\sqrt{7}-3}>0\\\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x-2\right)\cdot\left(x+2\right)}=\dfrac{1}{\left(2+2\right)\cdot\left(2-2\right)}=+\infty\end{matrix}\right.\)
a/ L'Hospital:
\(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)
b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)
Bạn tự hiểu là giới hạn khi x tới 2:
\(=\frac{x\left(x-2\right)\left[2\sqrt{x+2}+3x-2\right]}{4\left(x+2\right)-\left(3x-2\right)^2}=\frac{x\left(x-2\right)\left[2\sqrt{x+2}+3x-2\right]}{-9x^2+16x+4}=\frac{x\left(x-2\right)\left[2\sqrt{x+2}+3x-2\right]}{\left(x-2\right)\left(-9x-2\right)}\)
\(=\frac{x\left[2\sqrt{x+2}+3x-2\right]}{-9x-x}=\frac{2\left[2\sqrt{4}+6-2\right]}{-18-2}=...\)
Thấy : \(\sqrt{x^2+x+3}-x^2+1=\sqrt{x^2+x+3}-\left(x^2-1\right)=\dfrac{x^2+x+3-\left(x^2-1\right)^2}{\sqrt{x^2+x+3}+x^2-1}\)
\(=\dfrac{x^2+x+3-x^4+2x^2-1}{...}=\dfrac{-x^4+3x^2+x+2}{...}\)
\(=\dfrac{-\left(x-2\right)\left(x^3+2x^2+x+1\right)}{...}\)
\(\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\dfrac{-\left(x^3+2x^2+x+1\right)}{\left(x+2\right)\left[\sqrt{x^2+x+3}+x^2-1\right]}\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\dfrac{-\left(2^3+2.2^2+2+1\right)}{4.\left[\sqrt{2^2+2+3}+2^2-1\right]}=-\dfrac{19}{24}\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{2x+1}{2\sqrt{x^2+x+3}}-2x}{2x}=\dfrac{\dfrac{2.2+1}{2\sqrt{4+2+3}}-4}{4}=-\dfrac{19}{24}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)
a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)
b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)
Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)
\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)
\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)
\(a=\frac{0-1}{0-1}=1\)
\(b=\lim\limits_{x\rightarrow0}\frac{\frac{x^2}{\sqrt[3]{\left(1+x^2\right)^2}+\sqrt[3]{1+x^2}+1}}{x^2}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt[3]{\left(1+x^2\right)^2}+\sqrt[3]{1+x^2}+1}=\frac{1}{3}\)
\(c=\lim\limits_{x\rightarrow2}\frac{\sqrt{x+2}-2+\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{\frac{x-2}{\sqrt{x+2}+2}+\frac{x-2}{\sqrt{x+7}+3}}{x-2}=\lim\limits_{x\rightarrow2}\left(\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{x+7}+3}\right)\)
\(=\frac{1}{\sqrt{4}+2}+\frac{1}{\sqrt{9}+3}=\frac{5}{12}\)
\(L=\lim\limits_{x\rightarrow2}\frac{x-\sqrt{3x-2}}{x^2-4}\)
\(=\lim\limits_{x\rightarrow2}\frac{x^2-3x+2}{\left(x-4\right)\left(x+\sqrt{3x-2}\right)}=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{3x-2}\right)}\)
\(=\lim\limits_{x\rightarrow2}\frac{x-1}{\left(x+2\right)\left(x+\sqrt{3x-2}\right)}=\frac{1}{16}\)