Tìm nghiệm của các đa thức sau:
D(x)=x2+7x-8
E(x)=x2-6x
Các bạn giúp mk nhá. Mk đang cần gấp. Tks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow Q(x)=x^2+\sqrt{3}\geq \sqrt{3}>0$ với mọi $x\in\mathbb{R}$
Do đó đa thức $Q(x)$ vô nghiệm.
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
Đặt P(x)=0
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=17>0\)
Do đó; Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
Phân tích đa thức thành nhân tử thôi bạn :
Ta có :
\(h\left(x\right)=x^2+5x+6\)
\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)
\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)
\(\Rightarrow N_oh\left(x\right)=-2;-3\)
\(g\left(x\right)=2x^2+7x-9\)
\(g\left(x\right)=2x^2+9x-2x-9\)
\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)
\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)
\(\Rightarrow N_og\left(x\right)=1;-4,5\)
Em chỉ cần GP câu này nữa thôi
D(x)=x2+7x-8
Ta có:
\(D\left(x\right)=x^2+7x-8=x^2-x+8x-8=x\left(x-1\right)+8\left(x-1\right)=\left(x+8\right)\left(x-1\right)\)
\(D\left(x\right)=0\Leftrightarrow\left(x+8\right)\left(x-1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x+8=0\\x-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-8\\x=1\end{array}\right.\)
E(x)=x2 - 6x
Ta có:
\(E\left(x\right)=\text{ }x^2-6x=x\left(x-6\right)\)
\(E\left(x\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=6\end{array}\right.\)
Để mình giúp