K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

Vô nghiệm là k có nghiệm đấy bn Trần Việt Hà!!!!! Nghiệm là giá trị làm cho biểu thức ấy = 0

1 tháng 5 2016

vô nghiệp là sao vậy bạn

 

1 tháng 5 2016

=2x2-3/2x-3/2x+9/4+11/4=x2+x2-3/2x-3/2x+9/4+11/4=x2+x(x-3/2)-3/2(x-3/2)+11/4

=x2+(x-3/2)2+11/4 

do x2+(x-3/2)2>0=>x2+(x-3/2)2+11/4>11/4>0 Vx

=>2x2-3x+5 vo nghiem

1 tháng 5 2016

Ta có: \(2x^2-3x+5=\) \(2\left(x^2-\frac{3}{2}x+\frac{5}{2}\right)\)

                                       \(=2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)+\frac{31}{8}\)

                                       \(=2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\) (áp dụng hằng đẳng thức)

Vì \(\left(x-\frac{3}{4}\right)^2\ge0\) nên \(2\left(x-\frac{3}{4}\right)^2\ge0\)

\(\Rightarrow2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)

Vậy đa thức \(2x^2-3x+5\) ko có nghiệm

2x^2-3x+5

=2(x^2-3/2x+5/2)

=2(x^2-2*x*3/4+9/16+31/16)

=2(x-3/4)^2+31/8>=31/8>0 với mọi x

=>2x^2-3x+5 không có nghiệm

14 tháng 2 2020

Ta có:

\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)

\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)

Mà:

\(x^2+1>0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vậy pt vô nghiệm

14 tháng 2 2020

Trl

-Bạn kia  làm đúng r nhé !~ :>

Học tốt 

nhé bạn ~

\(f\left(x\right)=2x^4+3x^2+4=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Ta có \(2t^2+3t+4=0\)

Do \(2t^2\ge0;3t\ge0;4>0\)

Nên đa thức ko có nghiệm 

3 tháng 2 2021

Ta có : \(2x^2-3x+9=0\)

\(\Leftrightarrow\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\dfrac{3}{2\sqrt{2}}+\dfrac{9}{8}+\dfrac{63}{8}=0\)

\(\Leftrightarrow\left(x\sqrt{2}-\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{63}{8}=0\)

\(\Leftrightarrow\left(x\sqrt{2}-\dfrac{3}{2\sqrt{2}}\right)^2=-\dfrac{63}{8}\) ( Vô lý )

Vậy phương trình vô nghiệm .

3 tháng 2 2021

Ta có: \(2x^2-3x+9=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{31}{4}=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{31}{4}=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2=-\dfrac{31}{4}\) ( Vô lí )

Vậy phương trình vô nghiệm.

10 tháng 5 2018

\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)

                                                     \(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)

                                                        = \(\left(x^2+2\right)\left(x^2+x+1\right)\)

Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)

Suy ra , đa thức trên vô nghiệm