Bài 4: (0,5 đ) Tìm số nguyên n để phân số sau có giá trị nguyên: n + 5/ n + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
Đẻ \(\frac{n+5}{n+2}\) nguyên thì n+5 chia hết cho n+2
(n+5)-(n+2) chia hết cho n+2
3 chia hết cho n+2
\(n+2\in\left\{1;3;-1;-3\right\}\)
\(n\in\left\{-1;1;-3;-5\right\}\)
Để n+5/n+2 đạt giá trị nguyên
<=> n+5 chia hết cho n+2
=> (n+2)+3 chia hết cho n+2
Để (n+2)+3 chia hết cho n+2
<=> n+2 chia hết cho n+2 (luôn luôn đúng với mọi n)
Và 3 phải chia hết cho n+2
Vì 3 chia hết cho n+2 => n+2 thuộc Ư(3)={-3;-1;1;3}
Ta có bảng sau:
n+2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Vậy các giá trị của n thỏa mãn yêu cầu bài toán là -1;1;3;5
Ta có n+5 = n+2+3
để n+5/n+2 có giá trị là số nguyên thì n+5 chia hết cho n+2 hay n+2+3 chia hết cho n+2 mã n+2 chia hết cho n+2 nên 3 chia hết cho n+2 suy ra n+2 thuộc U(3)
Ma U3) ={-3;-1;1;3} suy ra n+2 thuoc {-3;-1;1;3}
vì n là số nguyên nên ta có bảng sau
n+2 | -3 | -1 | 1 | 3 |
n | -5 | -3 | -1 | 1 |
n/xét | chon | chon | chon | chon |
vậy với n thuộc {-5;-3;-1;1} thì n+5/n+2 có giá trị là số nguyên
a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên
\(\Rightarrow5⋮n-4\)
\(\Rightarrow n-4\)là ước của \(5\)
Mà các ước của \(5\) là : \(5;1;-1;-5\)
Ta có bảng sau :
\(n-4\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(n\) | \(9\) | \(5\) | \(3\)\(\) | \(-1\) |
\(KL\) | \(TM\) | \(TM\) | \(TM\) | \(TM\) |
Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.
b) Với \(n=5\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)
Với \(n=-1\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Vì n + 5/n + 2 có GT nguyên
Nên n + 5 chia hết cho n + 2
n + 2 + 3 chia hết cho n + 2
Mà n + 2 chia hết cho n + 2
Nên 3 chia hết cho n + 2
n + 2 thuộc U(3) = {-3 ; -1 ; 1 ; 3}
n thuộc {-5; -3 ; -1 ; 1}
Để n+5/n+2 có giá trị nguyên
=>n+5 chia hết cho n+2
=>n+2+3 chia hết cho n+2
Mà n+2 chia hết cho n+2
=>3 chia hết chon n+2
=>n+2 thuộc Ư(3)={-3;3;-1;1}
Ta có bảng sau