Cho \(y=mx^4+\left(3m+\frac{1}{24}\right)x^2+2;\left(C_m\right)\). Gọi A và B lần lượt là các điểm có hoành độ bằng -1 và 2. Tìm m để các tiếp tuyến của \(\left(C_m\right)\) tại A và B vuông góc với nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(f\left(x\right)=-x^2+mx+m+1\)
Để f(x) \(\le0\) \(\forall x\in R\) mà \(a=-1< 0\)
\(\Leftrightarrow\Delta\le0\) \(\Leftrightarrow\Delta=m^2+4\left(m+1\right)\le0\Leftrightarrow m^2+4m+4\le0\)
\(\Leftrightarrow\left(m+2\right)^2\le0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)
b, Để hàm số y xác định \(\forall x\in R\)
\(\Leftrightarrow mx^2-2mx+2\ge0\) có nghiệm \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-2.4.m\le0\\a=m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le2\\m>0\end{matrix}\right.\) \(\Leftrightarrow0< m\le2\)
a/ Do \(a=-1< 0\)
\(\Rightarrow\) Để \(f\left(x\right)\le0\) \(\forall x\in R\Leftrightarrow\Delta'\le0\)
\(\Leftrightarrow m^2+4\left(m+1\right)\le0\Leftrightarrow\left(m+2\right)^2\le0\)
\(\Rightarrow m=-2\)
b/ Để hàm số xác định với mọi x
\(\Leftrightarrow f\left(x\right)=mx^2-2mx+2\ge0\) \(\forall x\)
- Với \(m=0\Rightarrow f\left(x\right)=2\) thỏa mãn
- Với \(m\ne0\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-2m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 2\end{matrix}\right.\)
Vậy \(0\le m< 2\)
mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .
d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)
th1: \(m+2=0\Leftrightarrow m=-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có vô số nghiệm
th2: \(m+2\ne0\Leftrightarrow m\ne-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
vậy khi +) \(m=-2\) phương trình có vô số nghiệm
+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
=>x=3m-my và m(3m-my)-y=m^2-2
=>x=3m-my và 3m^2-m^2y-y=m^2-2
=>x=3m-my và 3m^2-y(m^2+1)=m^2-2
=>x=3m-my và y(m^2+1)=3m^2-m^2+2=2m^2+2
=>y=2 và x=3m-2m=m
x^2-y=2x+1
=>m^2-2=2m+1
=>m^2-2m-3=0
=>m=3 hoặc m=-1
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Để phương trình có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)
=>\(m-1\ne2m\)
=>\(m\ne-1\)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-2xm+m^2+5m=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-m^2-2m-1=-\left(m+1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\cdot\left(-1\right)\cdot\left(m+1\right)=-\left(m+1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)
\(x^2-y^2=24\)
=>\(\left(m+1\right)^2-\left(m-3\right)^2=24\)
=>\(m^2+2m+1-m^2+6m-9=24\)
=>8m-8=24
=>m=4(nhận)
Ta có : \(y'\left(x\right)=4mx^3+\left(6m+\frac{1}{12}\right)x\)
Ta có hệ số góc các tiếp tuyến \(\left(C_m\right)\) tại A và B lần lượt là :
\(y'\left(-1\right)=-10m-\frac{1}{12}\) và \(y'\left(2\right)=44m+\frac{1}{6}\)
Do đó các tiếp tuyến của \(\left(C_m\right)\) tại A và B vuông góc với nhau khi và chỉ khi :
\(y'\left(-1\right).y'\left(2\right)=-1\Leftrightarrow\left(-10m-\frac{1}{12}\right)\left(44m+\frac{1}{6}\right)=-1\)
\(\Leftrightarrow440m^2+\frac{16}{3}m-\frac{71}{72}=0\Leftrightarrow\left[\begin{array}{nghiempt}m=\frac{1}{24}\\m=-\frac{71}{1320}\end{array}\right.\)
Vậy giá trị cần tìm là \(\begin{cases}m=\frac{1}{24}\\m=-\frac{71}{1320}\end{cases}\)