K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

ta có:

 \(\left|x+3\right|\ge0;\left|x-3\right|\ge0\)

\(\Rightarrow\left|x+3\right|+\left|x-3\right|\ge0\Rightarrow7-x\ge0\Rightarrow-x\ge-7\Rightarrow x\le-7\)

\(\Rightarrow x+3\le-4\Rightarrow\left|x+3\right|=-x-3\)

và \(x-3\le-10\Rightarrow\left|x-3\right|=3-x\)

Thay \(\left|x+3\right|=-x-3\) và \(\left|x-3\right|=3-x\) vào phương trình, ta được:

\(\text{- x - 3 + 3 - x = 7 - x}\)

\(\Rightarrow-2x=7-x\Rightarrow-x=7\Rightarrow x=-7\)

Vậy x = - 7

16 tháng 5 2019

ta có:

|x+3|≥0;|x−3|≥0

⇒|x+3|+|x−3|≥0⇒7−x≥0⇒−x≥−7⇒x≤−7

⇒x+3≤−4⇒|x+3|=−x−3

x−3≤−10⇒|x−3|=3−x

Thay |x+3|=−x−3|x−3|=3−x vào phương trình, ta được:

- x - 3 + 3 - x = 7 - x

⇒−2x=7−x⇒−x=7⇒x=−7

Vậy x = - 7

a: =>x(x+3)=0

=>x=0 hoặc x=-3

b: =>x(1-2x)=0

=>x=0 hoặc x=1/2

c: =>(x-7)(2x+3-x)=0

=>(x-7)(x+3)=0

=>x=7 hoặc x=-3

d: =>(x-2)(3x-1-x-3)=0

=>(x-2)(2x-4)=0

=>x=2

20 tháng 3 2023

a)

`x^2 +3x=0`

`<=>x(x+3)=0`

\(< =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b)

`x-2x^2 =0`

`<=>x(1-2x)=0`

\(< =>\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c)

`(x-7)(2x+3)=x(x-7)`

`<=>(x-7)(2x+3)-x(x-7)=0`

`<=>(x-7)(2x+3-x)=0`

`<=>(x-7)(x+3)=0`

\(< =>\left[{}\begin{matrix}x-7=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

d)

`(x-2)(x+3)=(x-2)(3x-1)`

`<=>(x-2)(x+3)-(x-2)(3x-1)=0`

`<=>(x-2)(x+3-3x+1)=0`

`<=>(x-2)(-2x+4)=0`

\(< =>\left[{}\begin{matrix}x-2=0\\-2x+4=0\end{matrix}\right.\\ < =>x=2\)

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

24 tháng 1 2022

Ta có: \(8x^3+2x=\sqrt[3]{x+7}+x+7\)

Đặt \(\sqrt[3]{x+7}=t\)

 \(\Rightarrow8x^3+2x=t+t^3\)

 \(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2\right)+\left(2x-t\right)=0\)

 \(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2+1\right)=0\)

 \(\Leftrightarrow\left[{}\begin{matrix}2x=t\\4x^2+2xt+t^2+1=0\end{matrix}\right.\)

Với 2x=t \(\Leftrightarrow2x=\sqrt[3]{x+7}\Leftrightarrow8x^3-x-7=0\)

               \(\Leftrightarrow\left(x-1\right)\left(8x^2+8x+7\right)=0\)

               \(\Leftrightarrow\left[{}\begin{matrix}x=1\\8x^2+8x+7=0\left(loại\right)\end{matrix}\right.\)

Với \(4x^2+2xt+t^2+1=0\)

Do  \(4x^2+2xt+t^2+1=\left(x+t\right)^2+3x^2+1\ge1>0\)

  ⇒ ptvn

16 tháng 2 2022

\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)

\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)

\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)

\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)

\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

16 tháng 2 2022

3.15:

a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)

 

b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

 

3.16

\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)

\(\Leftrightarrow-14m+35-2m^2+8=0\)

\(\Leftrightarrow-14m-2m^2+43=0\)

\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)

\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)

\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)

\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)

pt vô nghiệm

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

a: \(\Leftrightarrow\dfrac{y+5}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)

\(\Leftrightarrow2\left(y+5\right)^2-\left(y-5\right)^2=y^2+25y\)

=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)

=>30y+25=25y

=>5y=-25

=>y=-5(loại)

b: \(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)

=>x^2+x+x^2-3x-4x=0

=>2x^2-6x=0

=>2x(x-3)=0

=>x=0(nhận) hoặc x=3(loại)

c: =>x^2-9-6(2x+7)=-13(x+3)

=>x^2-9-12x-42+13x+39=0

=>x^2+x-6=0

=>(x+3)(x-2)=0

=>x=2(nhận) hoặc x=-3(loại)