Cm: 11n+2+122n+1 chia hết cho 133
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
PT
1
NP
1
VT
12 tháng 12 2022
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Ta có: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
144n – 11n chia hết 133 11n + 2 + 122n + 1 chia hết cho 133
chúc bạn học tốt !!!
HN
0
4 tháng 1 2020
Em học lớp 8 thôi :)) Cái này em k chắc lắm ạ, có gì sai anh chỉ nhé !
Gợi ý :
3) \(n^3+11n=n\cdot\left(n^2+11\right)=n\cdot\left(n^2-1+12\right)\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
1) \(Có:2^n-2n-1=2\left(2^{n-1}-1\right)-1>0\forall n\ge3\)
nên : \(2^n>2n+1\)
Lời giải:
Xét modulo $3$ cho $n$ thôi . Ở đây mình xét cụ thể TH $n=3k$. TH \(n=3k+1,3k+2\) ta hoàn toàn làm tương tự
TH1: \(n=3k\)
Ta có :
\(11^3\equiv 1\pmod 7\Rightarrow 11^n=11^{3k}\equiv 1\pmod 7\Rightarrow 11^{n+2}\equiv 11^2\equiv 2\pmod 7\)
\(12^6\equiv 1\pmod 7\Rightarrow 12^{2n}=12^{6k}\equiv 1\pmod 7\Rightarrow 12^{2n+1}\equiv 12\pmod 7\)
\(\Rightarrow 11^{n+2}+12^{2n+1}\equiv 14\equiv 0\pmod 7\) $(1)$
Lại có:
\(11^3\equiv 1\pmod {19}\Rightarrow 11^n=11^{3k}\equiv 1\pmod {19}\Rightarrow 11^{n+2}\equiv 7\pmod {19}\)
\(12^6\equiv 1\pmod {19}\Rightarrow 12^{2n}=12^{6k}\equiv 1\pmod {19}\Rightarrow 12^{2n+1}\equiv 12\pmod {19}\)
\(\Rightarrow 11^{n+2}+12^{2n+1}\equiv 19\equiv 0\pmod {19}\) $(2)$
Từ \((1),(2)\) kết hợp với \((7,19)=1\) suy ra \(11^{n+2}+12^{2n+1}\vdots (7.19=133)\) (đpcm)
11n+2+122n+1=121*11n+12*144n
=(133-12)*11n+12*144n=133*11n+(144n-11n)*12
ta có 133*11n\(⋮\)133,(144n-11n)*12\(⋮\)(144-11)
vậy 11n+2+122n+1\(⋮\)133(đpcm)