tính tổng sau
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
giúp mình nha mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Leftrightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}=\frac{189}{380}\)
\(\Rightarrow B=\frac{189}{760}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(=\frac{1}{2}.\frac{189}{380}=\frac{189}{760}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{2550}=\frac{637}{1275}\)
Gọi A là tổng dãy phân số trên
Ta có :
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
Ta thấy:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{49.50.51}=\frac{2}{49.50}-\frac{2}{50.51}\text{}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2550}\)
\(\Rightarrow2A=\frac{1275}{2550}-\frac{1}{2550}\)
\(\Rightarrow2A=\frac{637}{1275}\Rightarrow A=\frac{637}{1275}:2=\frac{637}{2550}\)
Vậy tổng dãy phân số trên là :\(\frac{637}{2550}\)
Chúc bạn học tốt !!! :D
a/ \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+........+\frac{99}{100!}\)
\(\Leftrightarrow A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+......+\frac{100-1}{100!}\)
\(\Leftrightarrow A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+.....+\frac{100}{100!}-\frac{1}{100!}\)
\(\Leftrightarrow A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{99!}-\frac{1}{100!}\)
\(\Leftrightarrow A=1-\frac{1}{100!}\)
b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{9900}\)
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)
=> A = \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)
= \(\frac{1}{2}.\frac{5049}{10100}\)
= \(\frac{5049}{20200}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\)
Ta thấy:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{99.100.101}=\frac{1}{99.100}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{10100}\)
\(\Rightarrow2A=\frac{5050}{10100}-\frac{1}{10100}\)
\(\Rightarrow2A=\frac{5049}{10100}\Rightarrow A=\frac{5049}{10100}:2=\frac{5049}{20200}\)
A=1/2(1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20
A=1/2(1/1.2-1/19.20)
A=1/2(1/2-1/380)
A=1/2.189/380
A=189/760
Mà 189/760<1/4
=>A<1/4
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{18.19.20}\)
2A = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+......+\frac{2}{18.19.20}\)
2A = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{18.19}-\frac{1}{19.20}\)
2A = \(\frac{1}{1.2}-\frac{1}{19.20}\)
2A = \(\frac{189}{360}\)
A = \(\frac{189}{360}:2\)
Vậy A = \(\frac{189}{760}<\frac{189}{756}=\frac{1}{4}\)
k nha?
câu a phải là như z ms làm được bn ơi
A = 31.3+33.5+...+319.2031.3+13.5+...+319.20
gọi A=1/1*2*3+1/2*3*4+...+1/49*50*51
2A=2(1/1*2*3+1/2*3*4+...+1/49*50*51)
2A=2/1*2*3+2/2*3*4+...+2/49*50*51
2A=1/1*2-1/2*3+1/2*3-1/3*4+...+1/49*50-1/50*51
2A=1/2-1/2550
2A=637/1275
A=637/1275:2
A=637/2550
qua bài trên ta có công thức \(\frac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\)= \(\frac{1}{n\cdot\left(n+1\right)}\)-\(\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}\)
lộn công thức là 2/n*(n+1)*(n+2)=1/n*(n+1)-1/(n+1)*(n+2) cho tui xin lỗi
mà tick nhé