K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

Giúp mik câu d với

13 tháng 9 2018

Đáp án B

Điểm N ∈ d ⇒ N - 2 + 2 t ; 1 + t ; 1 - t  mà A là trung điểm của MN ⇒ M 4 - 2 t ; 5 - t ; 3 + t  

Mặt khác M = ∆ ∩ P ⇒ M ∈ P ⇒ 2 4 - 2 t - 5 - t + 3 + t - 10 = 0 ⇔ t = - 2  

Khi đó M ( 8 ; 7 ; 1 ) , N ( - 6 ; - 1 ; 3 ) ⇒ M N → = - 14 ; - 8 ; 2 ⇒ M N : x + 6 7 = y + 1 4 = z - 3 - 1 .

10 tháng 9 2019

6 tháng 10 2018

Đáp án C.

21 tháng 5 2019

Lấy điểm M( x0; 1-2x0)  nằm trên d.

Từ giả thiết ta có:

 

Chọn C.

NV
15 tháng 4 2022

a.

Để đường thẳng đi qua A

\(\Rightarrow2.1-m^2-m=0\Leftrightarrow m^2+m-2=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

b.

Hoành độ giao điểm của (d) với trục hoành:

\(2x+4=0\Rightarrow x=-2\Rightarrow\) hai đường thẳng cắt nhau tại (-2;0)

(d') đi qua  (-2;0) nên:

\(-2+m-2=0\Rightarrow m=4\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2023

Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$

Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$

$M$ là trung điểm của $AB$ nên:

\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)

\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)

Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$

Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$

Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$

$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:

$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$

19 tháng 3

tại sao lại ra 11/3 với 16/3 ạ

NV
6 tháng 3 2022

Thay tọa độ P, Q vào phương trình \(\Delta\) ta được 2 giá trị cùng dấu \(\Rightarrow\) P, Q nằm cùng phía so với \(\Delta\)

Gọi A là điểm đối xứng với \(P\) qua \(\Delta\Rightarrow AM=PM\)

\(\Rightarrow MP+MQ=AM+MQ\ge AQ\)

Dấu "=" xảy ra khi và chỉ khi A, M, Q thẳng hàng hay M là giao điểm AQ và \(\Delta\)

Phương trình đường thẳng d qua P và vuông góc \(\Delta\) có dạng:

\(1\left(x-1\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-13=0\)

Tọa độ giao điểm H giữa d và \(\Delta\) là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-13=0\end{matrix}\right.\) \(\Rightarrow H\left(3;5\right)\)

A đối xứng P qua \(\Delta\) khi và chỉ khi H là trung điểm AP \(\Rightarrow A\left(5;4\right)\)

\(\Rightarrow\overrightarrow{QA}=\left(8;8\right)=8\left(1;1\right)\Rightarrow\) đường thẳng AQ nhận (1;-1) là 1 vtpt

Phương trình AQ:

\(1\left(x+3\right)-1\left(y+4\right)=0\Leftrightarrow x-y-1=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y-1=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow M\left(0;-1\right)\)