Cho tam giác ABC cân tại A. Vẽ các đường cao BH và CK.
a) Chứng minh BK = CH
b) Chứng minh KH // BC
c) Cho BC = 10, AB = 8. Tính HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)(hai góc ở đáy của ΔBAC cân tại A)
Do đó: ΔKBC=ΔHCB(cạnh huyền-góc nhọn)
Suy ra: BK=CH(hai cạnh tương ứng)
b) Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà KB=HC(cmt)
và AB=AC(ΔABC cân tại A)
nên AK=AH
Xét ΔABC có
K\(\in\)AB(gt)
H\(\in\)AC(gt)
\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\left(\dfrac{AK}{AH}=\dfrac{AB}{AC}=1\right)\)
Do đó: KH//BC(Định lí Ta lét đảo)
a) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)(ΔABC cân tại A)
Do đó: ΔBKC=ΔCHB(cạnh huyền-góc nhọn)
Suy ra: BK=CH(hai cạnh tương ứng)
b) Xét ΔAIC vuông tại I và ΔBHC vuông tại H có
\(\widehat{BCH}\) chung
Do đó: ΔAIC\(\sim\)ΔBHC(g-g)
Suy ra: \(\dfrac{CA}{CB}=\dfrac{CI}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CA\cdot CH=CB\cdot CI\)(đpcm)
(Tự vẽ hình)
a) Xét \(\Delta BCK\) và \(\Delta CBH\) có:
\(\widehat{BKC}=\widehat{BHC}=90^0\)
\(BC\) chung
\(\widehat{BCH}=\widehat{CBK}\) (tính chất tam giác cân)
\(\Rightarrow\Delta BCK=\Delta CBH\) (ch-gn) \(\Rightarrow BK=CH\)
b) Do \(AB=AC;BK=AH\Rightarrow AB-BK=AC-CH\Rightarrow AK=AH\)
\(\Rightarrow\dfrac{AK}{AB}=\dfrac{AH}{AC}\Rightarrow HK//BC\) (ĐL Ta - let)
a, tg ABC cân tại A (gt) => ^ABC = ^ACB (tc)
xét tg HCB và tg KBC có : BC chung
^CHB = ^BKC = 90
=> tg ABC = tg KBC (ch-gn)
=> CH = BK (đn)
=> CH/AB = BK/AB mà AB = AC do tam giác ABC cân tại A (Gt)
=> CH/AC = BK/AB
=> HK // BC (đl)
b, sửa đề thành HC.AC = BC.IC
xét tg CHB và tg CIA có : ^ACB chung
^CHB = ^AIC = 90
=> tg CHB đồng dạng với tg AIC (g-g)
=> HC/BC = IC/AC (đn) => HC.AC = BC.IC
c, tg ABC cân tại A (Gt) mà AI là đường cao (gt)
=> AI đồng thời là đtt (đl) => IB = IC = 1/2 BC
mà có : HC.AC = BC.IC (Câu b) ; BC = a; AC = b
=> HC.b = a.a/2 => BC = a^2/2b
Có AH = AC - HC
=> AH = b - a^2/2b = (2b^2 - a^2)/2b
mà HK // BC (câu a) nên
AH/AC = HK/BC => HK = AH.BC/AC = a/b.(2b^2 - a^2)/2b
=> HK = (2ab^2 - a^3)/2b^2 = a - a^3/2b^2
a) Xét 2 tam giác vuông: \(\Delta KBC\) và \(\Delta HCB\)
\(\widehat{KBC}=\widehat{HCB}\)
\(BC\) chung
suy ra: \(\Delta KBC=\Delta HCB\)(ch_gn)
\(\Rightarrow\)\(BK=CH\)
b) \(AB=AC\) VÀ \(BK=CH\)
\(\Rightarrow\)\(\frac{BK}{AB}=\frac{HC}{AC}\)
\(\Rightarrow\) \(KH//BC\) (theo định lý Ta-lét đảo)
a, Xét tam giác BCK và tam giác CBH có
góc B = góc C ( tam giác ABC cân )
BC ( chung )
góc BKC = góc CHB (=90độ )
=> tam giác BCK = tam giác CBH( ch-gn)
=> BK=CH ( 2 cạnh tương ứng )
b, ta có : AK = AB-BK
AH= AC-CH
mà AB=AC ( tam giác ABC cân )
BK=CH( cmt)
=>AK=AH
=> \(\frac{AK}{AB}\) = \(\frac{AH}{AC}\)
Xét tam giác AHK và tam giác ACB có
\(\frac{AK}{AB}=\frac{AH}{AC}\) ( CMT)
=> HK//BC (hq đ/ly talet)