K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)

\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)

\(=\dfrac{1}{2}x^3+x^2-15x-18\)

2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)

\(=4x^3+6x^2-6x^2-9x+10x+15\)

\(=4x^3+x+15\)

3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)

\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)

\(=3x^5-x^4+5x^3+10x^2+26x-5\)

4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)

\(=\left(x^2-1\right)\left(x-2\right)\)

\(=x^3-2x^2-x+2\)

AH
Akai Haruma
Giáo viên
2 tháng 10 2021

a. 

$x^4-6x^2+9=0$

$\Leftrightarrow (x^2-3)^2=0$

$\Leftrightarrow x^2-3=0$

$\Leftrightarrow x^2=3$

$\Leftrightarrow x=\pm \sqrt{3}$

b.

$8x^3+12x^2+6x-63=0$

$\Leftrightarrow (8x^2+12x^2+6x+1)-64=0$

$\Leftrightarrow (2x+1)^3=64=4^3$

$\Leftrightarrow 2x+1=4$

$\Leftrightarrow x=\frac{3}{2}$

c. $(3-2x)^2-25=0$

$\Leftrightarrow (3-2x)^2-5^2=0$

$\Leftrightarrow (3-2x-5)(3-2x+5)=0$

$\Leftrightarrow (-2-2x)(8-2x)=0$

$\Leftrightarrow -2-2x=0$ hoặc $8-2x=0$

$\Leftrightarrow x=-1$ hoặc $x=4$

 

AH
Akai Haruma
Giáo viên
2 tháng 10 2021

d.

$6(x+1)^2-2(x+1)^3+2(x-1)(x^2+x+1)=1$

$\Leftrightarrow (x+1)^2[6-2(x+1)]+2(x^3-1)=1$

$\Leftrightarrow (x+1)^2(4-2x)+2x^3-3=0$

$\Leftrightarrow 6x+1=0$

$\Leftrightarrow x=\frac{-1}{6}$

e. $(x-2)^2-(x-2)(x+2)=0$

$\Leftrightarrow (x-2)[(x-2)-(x+2)]=0$

$\Leftrightarrow (x-2)(-4)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

f. $x^2-4x+4=25$

$\Leftrightarrow (x-2)^2=5^2=(-5)^2$

$\Leftrightarrow x-2=5$ hoặc $x-2=-5$

$\Leftrightarrow x=7$ hoặc $x=-3$

 

 

 

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

7 tháng 8 2021

undefined

undefined

9 tháng 10 2021

1)

a) \(=15x^3-20x^2+10x\)

b) \(=3x^4-x^3+4x^2-9x^3+3x-12x=3x^4-10x^3+4x^2-9x\)

2) 

a) \(\Rightarrow x\left(x^2-6x+12\right)=0\)

\(\Rightarrow x=0\)(do \(x^2-6x+12=\left(x^2-6x+\dfrac{36}{4}\right)+3=\left(x-\dfrac{6}{2}\right)^2+3\ge3>0\))

b) \(\Rightarrow\left(x+3\right)^3=0\Rightarrow x=-3\)

(3x²-5x+2)+(3x²+5x)= bao nhiêu ạ

Giúp em vs ạ . Em cảm ơn

a) Ta có: \(36x^3-4x=0\)

\(\Leftrightarrow4x\left(9x^2-1\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)

b) Ta có: \(3x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)

3 tháng 2 2022

a) \(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

e) \(\left(x-1\right)\left(2x+7\right)\left(x^2+2\right)=0\)

Vì \(x^2+2\ge2>0\forall x\)

\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

f) \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[\left(3x+2\right)\left(x+1\right)\right].\left(x-1-3x+2\right)=0\)

\(\Leftrightarrow\left(3x^2+5x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(3x^2+3x+2x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[3x\left(x+1\right)+2\left(x+1\right)\right]\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+2=0\\-2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;-\dfrac{2}{3};\dfrac{1}{2}\right\}\)

7 tháng 11 2021

\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

7 tháng 11 2021

a) 9x2-49=0

(3x)2-72=0

<=> (3x-7)(3x+7)=0

th1: 3x-7=0

<=>3x=7

<=>x=\(\dfrac{7}{3}\)

th2: 3x+7=0

<=>3x=-7

<=>x=\(-\dfrac{7}{3}\)