K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

Xét \(\Delta=\text{​​}\)\(\left(-4m\right)^2-4\left(3m^2-3\right)\)\(=4m^2+12>0\forall m\)

=> Pt luôn có hai nghiệm pb

Theo viet \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

\(P=\dfrac{2019}{\left|x_1-x_2\right|}\)\(\Leftrightarrow P^2=\dfrac{2019^2}{\left(x_1-x_2\right)^2}\)\(=\dfrac{2019^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\dfrac{2019^2}{16m^2-4\left(3m^2-3\right)}\)

\(=\dfrac{2019^2}{4m^2+12}\le\dfrac{2019^2}{12}\)

\(\Rightarrow P\le\dfrac{2019}{\sqrt{12}}\)

\(\Rightarrow P_{max}=\dfrac{2019\sqrt{12}}{12}\Leftrightarrow m=0\)

Vậy m=0

17 tháng 4 2021

Xét phương trình đã cho có dạng: $ax^2+bx+c=0$ với \(\left\{{}\begin{matrix}a=1\ne0\\b=3m+2\\c=3m+1\end{matrix}\right.\)

suy ra phương trình đã cho là phương trình bậc hai một ẩn $x$

Có $Δ=b^2-4ac=(3m+2)^2-4.(3m+1).1=9m^2=(3m)^2 \geq 0$ với mọi $m$ nên phương trình có 2 nghiệm phân biệt $⇔m \neq 0$

nên phương trình đã cho có 2 nghiệm $x_1;x_2$ với

$x_1=\dfrac{-b-\sqrt[]{ Δ}}{2a}=\dfrac{-(3m+2)-3m}{2}=-3m-1$

$x_2=\dfrac{-b+\sqrt[]{Δ}}{2a}=\dfrac{-(3m+2)+3m}{2}=-1$

Nên phương trình có 2 nghiệm nhỏ hơn 2 $⇔-3m-1<2⇔m>-1$

Vậy $m>-1;m \neq 0$ thỏa mãn đề

Ta có: \(\text{Δ}=\left(3m+2\right)^2-4\cdot1\cdot\left(3m+1\right)\)

\(=9m^2+12m+4-12m-4\)

\(=9m^2\ge0\forall m\)

Do đó: Phương trình luôn có 2 nghiệm

Để phương trình có hai nghiệm phân biệt thì \(9m^2\ne0\)

hay \(m\ne0\)

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m-2}{1}=-3m-2\\x_1\cdot x_2=\dfrac{3m+1}{1}=3m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m+1-2\left(-3m-2\right)+4>0\\-3m-2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m+1+6m+4+4>0\\-3m< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9m>-9\\m< -2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\Leftrightarrow-3< m< -2\)

Kết hợp ĐKXĐ, ta được: -3<m<-2

Vậy: -3<m<-2

Δ=(-4m)^2-4(4m^2-m+2)

=16m^2-16m^2+4m-8=4m-8

Để phương trình có hai nghiệm phân biệt thì 4m-8>0

=>m>2

|x1-x2|=2

=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

=>\(\sqrt{\left(4m\right)^2-4\left(4m^2-m+2\right)}=2\)

=>\(\sqrt{16m^2-16m^2+4m-8}=2\)

=>\(\sqrt{4m-8}=2\)

=>4m-8=4

=>4m=12

=>m=3(nhận)

14 tháng 11 2017

Đáp án C

Khi m > -3 thì  phương trình f(x) = m có hai nghiệm lớn hơn 1. Do đó chọn phương án C.

8 tháng 3 2022

Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt 
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0

3 tháng 2 2017

8 tháng 2 2024

Tại sao 2x1=x2 lại loại

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:Đặt $x^2=t$ thì PT ban đầu trở thành:

$t^2-(3m+1)t+6m-2=0 (1)$Để PT ban đầu có 4 nghiệm phân biệt thì $(1)$ phải có 2 nghiệm dương phân biệt.

Điều này xảy ra khi: \(\left\{\begin{matrix} \Delta=(3m+1)^2-4(6m-2)>0\\ S=3m+1>0\\ P=6m-2>0\end{matrix}\right.\Leftrightarrow m\neq 1; m>\frac{1}{3}\)

Khi đó, 4 nghiệm phân biệt là:

$x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}$

Hiển nhiên $x_1, x_3>-4$ 

Giờ ta cần $-\sqrt{t_1}; -\sqrt{t_2}>-4$

$\Leftrightarrow \sqrt{t_1}, \sqrt{t_2}< 4$

$\Rightarrow t_1, t_2< 16$. Điều này xảy ra khi:

\(\left\{\begin{matrix} t_1+t_2<32\\ (t_1-16)(t_2-16)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1+t_2< 32\\ t_1t_2-16(t_1+t_2)+256>0\end{matrix}\right.\)

\(\left\{\begin{matrix} 3m+1<32\\ 238-42m>0\end{matrix}\right.\Leftrightarrow m< \frac{17}{3}\)

Vậy \(m\in (\frac{1}{3}; \frac{17}{3}); m\neq 1\)

 

7 tháng 6 2018