K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

Phương trình tiếp tuyến tại M0 có dạng: y = k(x – x0) + y0  (*)

Với x0 là hoành độ tiếp điểm;

Với y0 = f(x0) là tung độ tiếp điểm;

Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.

Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k

6 tháng 1 2018

NV
19 tháng 4 2021

\(f'\left(x\right)=3x^2-4x\)

\(f'\left(x\right)>0\Leftrightarrow3x^2-4x>0\Rightarrow\left[{}\begin{matrix}x>\dfrac{4}{3}\\x< 0\end{matrix}\right.\)

\(f'\left(2\right)=4\) ; \(f\left(2\right)=0\)

Phương trình tiếp tuyến:

\(y=4\left(x-2\right)+0\Leftrightarrow y=4x-8\)

4 tháng 7 2017

Ta có:  

Với x0= 1 thì y0= 1        

Vậy phương trình tiếp tuyến cần tìm là:

Chọn B.

21 tháng 5 2017

Chọn C.

Theo ý nghĩa hình học của đạo hàm, tiếp tuyến của đồ thị hàm số y = f(x) tại  M x 0 ; f x 0  có hệ số góc là f ' x 0 .  Suy ra phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại  điểm  M x 0 ; f x 0  là: y = f ' x 0 x - x 0 + f x 0

6 tháng 4 2017

Đáp án là A

26 tháng 6 2019

5 tháng 5 2023

I. Hàm số xác định trên D = R.

+) \(\lim\limits f\left(x\right)_{x\rightarrow1}=\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{x-1}\)

                        \(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)}\) 

                        \(=\lim\limits_{x\rightarrow1}\left(x-2\right)\)

                        \(=-1\)

+) \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\left(1-2x\right)=-1\)

=> Hàm số liên tục tại x0 = 1

II. Gọi phương trình tiếp tuyến tại N(x0; y0) là:

y = y'(x0)(x - x0) + y0

y = -x3 - x2 - 6x + 1 

=> y' = -3x2 - 2x + 6 

Vì tiếp tuyến song song với đường thẳng y = -6x + 17 => y'(x0) = 6

<=> -3x2 - 2x + 6 = 6

<=> -3x2 - 2x = 0

<=> -x(3x + 2) = 0

<=> x = 0 hoặc x = -2/3

Trường hợp 1: x0 = 0 => y0 = 0

=> y'(x0) = 6

=> Phương trình tiếp tuyến: y = 6(x - 0) + 1

                                      <=> y = 6x + 1

Trường hợp 2: x0 = -2/3 => y0 = 37/9

=> y'(x0) = 9

=> Phương trình tiếp tuyến: y = 9(x + 2/3) + 37/9

                                      <=> y = 9x + 91/9

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, Ta có: \(y'=\left(x^2\right)'=2x\Rightarrow y'\left(1\right)=2\cdot1=2\)

Vậy hệ số góc của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoàng độà k = 2.

b, Ta có: \(y_0=1^2=1\)

Vậy phương trình tiếp tuyến là \(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=2\left(x-1\right)+1=2x-1\)

28 tháng 7 2017

Chọn C

Ta có: