K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 11 2019

\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

12 tháng 11 2019

Đây là BĐT j vậy bạn

11 tháng 1 2016

Áp dụng BĐT cô si với ba số không âm ta có :

\(\frac{1}{\left(x+1\right)^2}+\frac{x+1}{8}+\frac{x+1}{8}\ge3\sqrt[3]{\frac{1}{64}}=\frac{3}{4}\)

=> \(\frac{1}{\left(x+1\right)^2}\ge\frac{3}{4}-\frac{x+1}{4}\) (1)

Dấu '' = '' xảy ra khi x = 1 

CM tương tự ra có " \(\frac{1}{\left(y+1\right)^2}\ge\frac{3}{4}-\frac{y+1}{4}\)(2) ; \(\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}-\frac{z+1}{4}\) (3)

Dấu ''= '' xảy ra khi y = 1 ; z = 1 

Từ (1) (2) và (3) => \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\cdot3-\frac{x+y+z+3}{4}\)\(\ge\frac{9}{4}-\frac{3\sqrt[3]{xyz}+3}{4}=\frac{9}{4}-\frac{6}{4}=\frac{3}{4}\)

BĐT được chứng minh 

Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1

 

24 tháng 11 2016

\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)

Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)(dùng AM-GM giải quyết chỗ này)

Vậy ta cần chứng minh \(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)

\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)

\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)

Đặt \(a=\frac{z}{x+y}\ge1\),ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)

Dễ thấy BĐT này đúng.Vậy ta có đpcm

31 tháng 10 2018

cau a la bdt vas

con cau b la van dung he qua cua bdt vas

16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/910328.html

11 tháng 3 2019

\(P=\frac{3\left(x^3+y^3+z^3\right)}{4\left(xy+yz+zx\right)}+\frac{1}{\left(x+y+z\right)^2}\ge\frac{\left(x+y+z\right)\left(xy+yz+zx\right)}{4\left(xy+yz+zx\right)}+\frac{1}{\left(x+y+z\right)^2}\)

\(=\frac{x+y+z}{4}+\frac{1}{\left(x+y+z\right)^2}\)

Đặt \(x+y+z=a\) thì cần chứng minh

\(\frac{a}{4}+\frac{1}{a^2}\ge\frac{3}{4}\)

\(\Leftrightarrow\left(a-2\right)^2\left(a+1\right)\ge0\)(đúng)

9 tháng 3 2016

Theo bất đẳng thức Cô-Si, ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) Do vậy áp dụng bất đẳng thức Cô-Si 

\(xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16\cdot\frac{1}{4}}=\frac{17}{4}.\)

a. Ta có \(M=\left(xy\right)^2+\frac{1}{\left(xy\right)^2}+2=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{17}{4}\right)^2=\frac{289}{16}.\)  Dấu bằng xảy ra khi \(x=y=\frac{1}{2}.\) Vây giá trị bé nhất của M là \(\frac{289}{16}.\)
b.  Theo bất đẳng thức Cô-Si 

\(N\ge2\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=2\left(xy+\frac{1}{xy}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\cdot\frac{17}{4}+4\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=\frac{25}{2}.\)

Dấu bằng xảy ra khi và chỉ \(x=y=\frac{1}{2}.\) 

4 tháng 11 2017

vì x+y+z=1nên

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)

nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)

\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)

dau = xay ra khi x=y=z=1/3