K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)

               \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)

               \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)

Suy ra:

A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)

                               A<1+1-\(\frac{1}{50}\)

                               A<2-\(\frac{1}{50}\)<2

             Vậy A<2(đpcm)

                              

17 tháng 4 2016

em viết sai 

chứng minh A < 2

6 tháng 5 2017

\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
 

15 tháng 5 2017

a<2 ai k cho mik, mik se k lại hứa thế lun nói là làm

5 tháng 5 2017

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(\frac{1}{1^2}=1\)

Ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4}\)

\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}\)

\(\Rightarrow A< 2-\frac{1}{50}< 2\left(dpcm\right)\)

11 tháng 4 2017

\(\frac{1}{2^2}< \frac{1}{1.2}\)

...................\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(\Rightarrow A< 1-\frac{1}{50}< \frac{49}{50}< 1< 2\)

10 tháng 4 2017

1/2^2<1/1*2;1/3^2<1/2*3;1/4^2<1/3*4;1/50^2<1/49*50

ta có:

   =>    1/1^2+1/2*3+1/3*4+...+1/49*50

  <=>   1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

  <=>   1-1/50 < 2

    =>   A < 2

2 tháng 5 2017

\(A=\frac{1}{1^1}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)

Khi đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}=B\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{49}-\frac{1}{50}< 1\)

Vì \(A< 1+B\)mà \(B< 1\)nên \(B+1< 2\)do đó \(A< 2\)

Vậy \(A< 2\)

2 tháng 5 2017

1/12+1/22+....+1/502<1/1+1/1x2+1/2x3+....+1/49x50=1-1/50=49/50<2

=>A<2(đpcm)

23 tháng 4 2016

Ta có 

\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3}......\frac{1}{50^2}<\frac{1}{49.50}\)

\(=>A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

=> A<2-1/50

=> A < 2

=> đpcm

23 tháng 4 2016

Ta có: A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

 A < \(\frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\) 

=> A < 1 +(  \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\))

A< 1 +1 -\(\frac{1}{50}\)

A< 2 - \(\frac{1}{50}\)

Vậy A< 2

1 tháng 5 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

=>A< \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

         =\(1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)

         =\(1+\left(1-\frac{1}{50}\right)\)

         =\(1+\frac{49}{50}\) =\(1\frac{49}{50}<2\)                    

Vậy A<2                                              

1 tháng 5 2016

A=1/1^2+1/2^2+1/3^2+.....+1/50^2

A<B=1+1/1.2+1/2.3+1/3.4+........+1/49.50

        =1+(1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50)

         =1+(1-1/50)

             =1+ 49/50

            =99/100<50/100 SUY RA 99/100<50/100 DO A<B<2

              SUY RA A<2

 ỦNG HỘ CHO MÌNH NHÉ

      

4 tháng 1 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath

4 tháng 1 2018

A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)

A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)

=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)

=\(1+1-\frac{1}{50}\)

=\(2-\frac{1}{50}\)\(< 2\)

\(\Rightarrow A< 2\)

12 tháng 5 2016

\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)

30 tháng 4 2016

A\(<\frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49.50}\)

=\(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..............+\frac{1}{49}-\frac{1}{50}\)

=\(2-\frac{1}{50}<2\)

\(\Rightarrow A<2\left(đpcm\right)\)

30 tháng 4 2016

Cho góc bẹt xOy. Vẽ tia Oz sao cho góc yOz = 800.

a) Tính góc xOz ?

b) Vẽ Om, On lần lượt là tia phân giác của góc xOz và góc yOz. Hỏi hai góc và có phụ nhau không ? Tại sao?