K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: AD=ED(Hai cạnh tương ứng)

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

1 tháng 8 2018

Theo t/c đường phân giác, ta được:  \(\frac{BD}{BA}=\frac{DF}{AF},\frac{BA}{BC}=\frac{EA}{EC}\)

Chứng minh được \(\Delta BAC\infty\Delta BDA\left(g.g\right)\Rightarrow\frac{BA}{BC}=\frac{BD}{BA}\)

Vậy \(\frac{DF}{FA}=\frac{AE}{EC}\)

Bạn nên suy nghĩ một lúc nếu ko làm được thì mới hỏi. Chúc bạn học tốt.

14 tháng 4 2016

bạn chưa biết làm phần nào z

oh sorry I don't know!!!

6747568768

15 tháng 5 2017

a) Xét tam giác ADB và tam giác BAC, ta có:
   Góc B chung
   Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)

15 tháng 5 2021

a) Xét ΔABD và ΔEBD có

BD là phân giác => góc ABD = góc EBD 

BD chung

Góc BAD = góc BED =90o

=> ΔABD = ΔEBD (ch-gn)

=>AD=ED(2 cạnh tương ứng)

b) xét ΔADF và ΔEDC có

Góc DAF= góc DEC=90o

AD=ED (cmt)

Góc ADF=EDC( đối đỉnh)

=>ΔADF = ΔEDC (gcg)

=> AF=EC(2 cạnh tương ứng)

c) ta có ΔABD = ΔEBD (cmt)

=> AB = EB (2 cạnh tương ứng)

=> ΔBAE cân tại B 

=> \(\widehat{BAE}=\widehat{BEA}=\)\(\dfrac{180 - \widehat{B}}{2}\)(1)

ta lại có AF=EC (cmt)

=> AB+AF=BE+EC

=> BF=BC

=> ΔBFC cân tại B 

=>\(\widehat{BFC}=\widehat{BCF}=\dfrac{180-\widehat{B}}{2}\)(2)

từ (1) và (2) => \(\widehat{BFC}\)=\(\widehat{BAE}\)  mà 2 góc ở vị trí đồng vị 

=> AE//FC

16 tháng 5 2021

cảm ơn ok

5 tháng 5 2023

Em xem lại ghi đề đã chính xác chưa nhé!

5 tháng 5 2023

 

à tia phân giác ad của g0c HAC (D thu0c BC)