cho tam giác ABC có góc B bằng 2 lần góc C, AD là đường cao, kẻ tia phân giác của góc ABC cắt AD tại F và AC tại E. Chứng minh: DE/AF = AE/EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Theo t/c đường phân giác, ta được: \(\frac{BD}{BA}=\frac{DF}{AF},\frac{BA}{BC}=\frac{EA}{EC}\)
Chứng minh được \(\Delta BAC\infty\Delta BDA\left(g.g\right)\Rightarrow\frac{BA}{BC}=\frac{BD}{BA}\)
Vậy \(\frac{DF}{FA}=\frac{AE}{EC}\)
Bạn nên suy nghĩ một lúc nếu ko làm được thì mới hỏi. Chúc bạn học tốt.
a) Xét tam giác ADB và tam giác BAC, ta có:
Góc B chung
Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)
a) Xét ΔABD và ΔEBD có
BD là phân giác => góc ABD = góc EBD
BD chung
Góc BAD = góc BED =90o
=> ΔABD = ΔEBD (ch-gn)
=>AD=ED(2 cạnh tương ứng)
b) xét ΔADF và ΔEDC có
Góc DAF= góc DEC=90o
AD=ED (cmt)
Góc ADF=EDC( đối đỉnh)
=>ΔADF = ΔEDC (gcg)
=> AF=EC(2 cạnh tương ứng)
c) ta có ΔABD = ΔEBD (cmt)
=> AB = EB (2 cạnh tương ứng)
=> ΔBAE cân tại B
=> \(\widehat{BAE}=\widehat{BEA}=\)\(\dfrac{180 - \widehat{B}}{2}\)(1)
ta lại có AF=EC (cmt)
=> AB+AF=BE+EC
=> BF=BC
=> ΔBFC cân tại B
=>\(\widehat{BFC}=\widehat{BCF}=\dfrac{180-\widehat{B}}{2}\)(2)
từ (1) và (2) => \(\widehat{BFC}\)=\(\widehat{BAE}\) mà 2 góc ở vị trí đồng vị
=> AE//FC