Bài 341. a) Cho a = 11…1(n chữ số 1), b = 100…05(n - 1 chữ số 0). Chứng minh rằng: ab + 1 là số chính phương.
b) Cho một dãy số có số hạng đầu là 16, các số hạng sau là các số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước :
16, 1156, 111556, …
Chứng minh rằng mọi số hạng của dãy đều là số chính phương.
\(10^n=11...1\times9+1\)(\(n\)chữ số \(1\))
a) \(b=9a+1+5=9a+6\)
\(ab+1=a\left(9a+6\right)+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương.
b) Số đó có dạng: \(A=11...155...5+1\)(\(n\)chữ số \(1\), \(n\)chữ số \(5\))
\(a=11...1\)(\(n\)chữ số \(1\))
\(a=a\left(9a+1\right)+5a+1=9a^2+a+5a+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương.