K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

Sửa đề: \(ab+bc+ca\le3\)

\(F=\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}+\frac{1}{\sqrt[3]{abc}}\)

\(=\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}+\frac{1}{3\sqrt[3]{abc}}+\frac{1}{3\sqrt[3]{abc}}+\frac{1}{3\sqrt[3]{abc}}\)

\(\ge6\sqrt[6]{\frac{1}{\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)27abc}}\)

\(=6\sqrt[6]{\frac{1}{27\left(ac+2bc\right)\left(ba+2ca\right)\left(cb+2ab\right)}}\)

\(\ge6\sqrt[6]{\frac{1}{\left(ac+2bc+ba+2ca+cb+2ab\right)^3}}\)

\(\ge6\sqrt[6]{\frac{1}{27\left(ab+bc+ca\right)^3}}=6\sqrt[6]{\frac{1}{27.27}}=2\)

29 tháng 7 2021

đánh nhầm teo

10 tháng 10 2021

1, Áp dụng BĐT cosi cho a,b,c>0

\(ab+bc\ge2\sqrt{ab^2c}=2b\sqrt{ac}\\ bc+ca\ge2\sqrt{abc^2}=2c\sqrt{ab}\\ ca+ab\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow2\left(ab+bc+ac\right)\ge2\left(b\sqrt{ac}+a\sqrt{bc}+c\sqrt{ab}\right)\\ \Leftrightarrow ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

10 tháng 10 2021

\(2,\)

Ta có

 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\\ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Áp dụng BĐT cm ở câu 1

Suy ra đpcm

 

8 tháng 1 2022

\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{1-a-b-ab}}=\sqrt{\dfrac{ab}{\left(1-b\right)\left(1-a\right)}}\le\dfrac{\dfrac{a}{1-b}+\dfrac{b}{1-a}}{2}\left(1\right)\) \(tương-tự\Rightarrow\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{\dfrac{b}{1-c}+\dfrac{c}{1-b}}{2}\left(2\right)\)

\(\Rightarrow\sqrt{\dfrac{ca}{b+ ca}}\le\dfrac{\dfrac{c}{1-a}+\dfrac{a}{1-c}}{2}\left(3\right)\)

\( \left(1\right)\left(2\right)\left(3\right)\Rightarrow A\le\dfrac{\dfrac{a}{1-b}+\dfrac{b}{1-a}+\dfrac{b}{1-c}+\dfrac{c}{1-b}+\dfrac{c}{1-a}+\dfrac{a}{1-c}}{2}=\dfrac{\dfrac{a+c}{1-b}+\dfrac{b+c}{1-a}+\dfrac{b+a}{1-c}}{2}=\dfrac{\dfrac{1-b}{1-b}+\dfrac{1-a}{1-a}+\dfrac{1-c}{1-c}}{2}=\dfrac{3}{2}\)

\(\Rightarrow A_{max}=\dfrac{3}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

8 tháng 1 2022

à e nhầm tìm giá trị lớn nhất ạ

7 tháng 7 2019

\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)

\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)

Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)

=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)

\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)

24 tháng 8 2020

Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)

\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)

\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)

CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)

          \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......

(Dấu = xảy ra (=) a=b=c=1/3

24 tháng 3 2017

Từ \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{c}{ca}+\dfrac{a}{ca}\)

\(\Rightarrow\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}\\\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\\\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{1}{b}+\dfrac{1}{a}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\\\dfrac{1}{c}=\dfrac{1}{b}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Rightarrow a=b=c\)

Khi đó: \(M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{1\cdot1+1\cdot1+1\cdot1}{1^2+1^2+1^2}=\dfrac{3}{3}=1\)

25 tháng 3 2017

thank nha