K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

ta có a^2>=;b^2>=0 mà 5=1+4=2+3=3+2=4+1=5+0=0+5

vì a^2 và b^2 là 2 số bình phương nên a^2+b^2=1+4=4+1=0+5=5+0

với trường hợp a^2+b^2=1+4

        a^2+b^2=1^2+2^2=-1^2+-2^2

  suy ra a=1;-1;b=2;-2

còn với trường hợp a^2+b^2=4+1

thì a=2;-2;b=1;-1

a^2+b^2=0+5

thì a=0 còn b^2=5(loại vì ko có số nguyên nào bình phương lên=5)

trường hợp còn lại cũng loại luôn

kết luận vậy a=1 thì b=2;a=2 thì b=1;a=-2 thì b=-1;a=-1 thì b=-2

15 tháng 9 2017

Câu A

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Không mất tổng quát giả sử $a\leq b\leq c$

Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ là số lẻ. Mà $5070$ chẵn nên vô lý.

Do đó trong 3 số $a,b,c$ tồn tại ít nhất 1 số chẵn.

Số nguyên tố chẵn luôn là số bé nhất (2) nên $a=2$

Khi đó: $b^2+c^2=5070-a^2=5066\geq 2b^2$

$\Rightarrow b^2\leq 2533$

$\Rightarrow b< 51$

$\Rightarrow b\in \left\{2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47\right\}$

Thử các TH này ta thấy $(b,c)=(5,71), (29,65)$
Vậy $(a,b,c)=(2,5,71), (2,29,65)$ và các hoán vị.

vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn 

+) cả 3 số a,b,c chẵn

=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )

khi đó: a2+b2+c2= 12(loại)

=> một trong 3 số a,b,c chẵn 

vì giá trị các số bằng nhau, giả sử a chẵn => a=2

khi đó: a2+b2+c2= 4+b2+c2

=> b2+c2= 5066

vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 

=> bvà c2 có tận cùng là 0, 1, 4, 5, 6, 9 

Mà b và c lẻ 

=> bvà c2 có tận cùng là 1, 5, 9 

mà 5066 có tận cùng là 6

=> bvà c2 có tận cùng là 1, 5

=> b và c có tận cùng là 1, 5

giả sử b có tận cùng là 5=> b=5

khi đó: 25+ c= 5066

                   c= 5041=712

=> c = 71

vậy, a=2, b=5, c=71 và các hoán vị của nó

17 tháng 9 2021

?

8 tháng 8 2021

giúp tôi

\(4x=7y\Rightarrow\dfrac{x}{7}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{49}=\dfrac{y^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

      \(\dfrac{x^2}{49}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{49+16}=\dfrac{260}{65}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=196\\y^2=64\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-14;y=-8\\x=14;y=8\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

31 tháng 3 2023

Xét tổng

  Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0

Suy ra có ít nhất một trong 7 số  là số chẵn

  là số chẵn

11 tháng 5 2022

BN THAM KHẢO:

undefined

 

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Lời giải:

Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.

Chứng minh:

Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)

Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$ 

$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$

Vậy ta có đpcm

-----------------------------

Áp dụng vào bài:

TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$

TH1: Nếu $a\vdots 3, b\not\vdots 3$

$\Rightarrow b^2$ chia $3$ dư $1$

$\Rightarrow b^2+3\vdots 3$

$\Rightarrow a(b^2+3)\vdots 9$

$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$

TH3: Nếu $a\not\vdots 3; b\vdots 3$

$\Rightarrow a^2$ chia $3$ dư $1$

$\Rightarrow a^2+2\vdots 3$

$\Rightarrow b(a^2+2)\vdots 9$

$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$

TH4: Nếu $a\not\vdots 3; b\not\vdots 3$

$\Rightarrow a^2, b^2$ chia $3$ dư $1$

$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$

$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$

Từ các TH trên ta có đpcm.

 

12 tháng 7 2020

thx ban

21 tháng 4 2021

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12