tìm số dư của phép chia 5^2015 chia cho 53
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NC
0
AH
Akai Haruma
Giáo viên
13 tháng 12 2022
Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:
b.
$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$
$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$
$=2+24+(1+5)(5^2+5^4+...+5^{98}$
$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$
$\Rightarrow A$ chia $6$ dư $2$.
ƯCLN(5,53)=1 nên theo định lí Fermat, ta được:
552\(\equiv\)1 (mod 53)
=> (552)38 \(\equiv\) 51976 \(\equiv\)1 (mod 53) (1)
Ta có: 513 \(\equiv\) 23 (mod 53)
=> (513)3 \(\equiv \) 539 \(\equiv\) 233 \(\equiv\)30 (mod 53) (2)
Nhân (1) và (2) với nhau, ta được:
51976 .539 \(\equiv\) 1.30 \(\equiv \)30 (mod 53)
=>52015 \(\equiv\)30 (mod 53)
Vậy 52015 chia 53 dư 30
Đây là ý kiến của mình, có gì sai sót mong bạn bỏ qua
bạn dùng đồng dư là được