K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

\(A=\frac{1}{2}\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\)

Min A= 1/2  khi x = y =1/2

8 tháng 4 2016

Vì x+y=1

=>y=1-x

Ta có: \(A=x^2+y^2=x^2+\left(1-x\right)^2=x^2+1\left(1-x\right)-x\left(1-x\right)=x^2+1-x-x+x^2\)

\(A=2x^2-2x+1=2.\left(x^2-x+\frac{1}{2}\right)\)

\(A=2.\left(x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\right)=2\left[x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{1}{4}\right]\)

\(A=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\)

\(2\left(x-\frac{1}{2}\right)^2>=0\) với mọi x

=>\(2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>=\frac{1}{2}\) với mọi x

Dấu "=" xảy ra <=>\(x=\frac{1}{2}\);mà x+y=1=>\(y=\frac{1}{2}\)

Khi đó GTNN của A=x2+y2 là 1/2 tại \(x=y=\frac{1}{2}\)

 

 

NV
12 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)

 \(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)

\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)

\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)

\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)

\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow x+y=0\Rightarrow y=-x\)

\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)

Dấu "=" xảy ra khi \(x=y=0\)

24 tháng 11 2021

Ta có x2+y2 / x-y = x2-2xy+y2+2xy / x-y

                            = (x-y)2+2xy / x-y

Mà xy = 1 => 2xy = 2. Thay vào, ta có

(x-y)2+2xy / x-y = (x-y)2+2 / x-y = (x-y)2 / x-y + 2 / x-y

                                                  = x-y + 2 / x-y

Áp dụng BĐT Cauchy, ta có

x-y + 2 / x-y ≥ 2.√(x-y).2 / x-y] = 2.√2 = (√2)3

Vậy Min A = (√2)3

NV
7 tháng 2 2021

\(x+y=1\Rightarrow y=1-x\)

\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)

\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)

15 tháng 10 2023

\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)

\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)

15 tháng 10 2023

a) Ta có:

\(x-y=2\)

\(\Rightarrow\left(x-y\right)^2=2^2\)

\(\Rightarrow x^2-2xy+y^2=4\)

Mà: \(xy=1\)

\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)

\(\Rightarrow x^2+y^2=4+2\)

\(\Rightarrow x^2+y^2=6\)

b) Ta có: 

\(x+y=1\)

\(\Rightarrow\left(x+y\right)^3=1^3\)

\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)

\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\) 

Mà: x + y = 1

\(\Rightarrow x^3+3xy\cdot1+y^3=1\)

\(\Rightarrow x^3+3xy+y^3=1\)

NV
20 tháng 1 2022

Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)

Với mọi số thực x ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)

\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)

\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)