[a2/(a2+2bc)+b2/(b2+2ac)+c2/(c2+2ab)]/[bc/(a2+2bc)+ac/(b2+2ac)+ab/(c2+2ab)]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)
CMTT: \(ab+bc>b^2;ab+ac>a^2\)
Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)
Thêm điều kiện: a,b,c thỏa mãn là các cạnh của một tam giác
Ta có: \(a< b+c\)
nên \(a^2< ab+ac\)
Ta có: b<a+c
nên \(b^2< ab+bc\)
Ta có: c<a+b
nên \(c^2< ac+bc\)
Do đó: \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
VT = (a+b+c)^2
= [(a+b) + c]^2
= (a+b)^2 + 2(a+b)c + c^2
= a^2 + 2ab + b^2 + 2ac + 2bc + c^2
= a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = VP
Vậy ...
---------------------------------------
VT= (a+b+c)^2 + a^2 + b^2 + c^2
= [(a+b) + c]^2 + a^2 + b^2 + c^2
= (a+b)^2 + 2(a+b)c + c^2 + a^2 + b^2 + c^2
= a^2 + 2ab + b^2 + 2ac + 2bc + c^2 + a^2 + b^2 + c^2
= (a^2 + 2ab + b^2) + (b^2 + 2bc + c^2) + (c^2 + 2ca + a^2)
= (a+b)^2 + (b+c)^2 + (c+a)^2 = VP
Vậy...
BĐT cần chứng minh tương đương:
\(a^2+b^2+c^2\ge2ab-2bc+2ca\)
\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)
\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)
\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng