K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)(Vì a+b+c\(\ne\)0)

\(\Rightarrow\) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

Do a = 2015  \(\Rightarrow\)a =b =c =2015

Vậy b = c = 015

14 tháng 2 2019

Cảm ơn bạn nhiều ạ

22 tháng 6 2018

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(a^3+b^3+c^3-3abc=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)\)

\(-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\Rightarrow\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

\(\left(a-b\right)^2>=0\Rightarrow a^2-2ab+b^2>=0\Rightarrow a^2+b^2>=2ab\)

tương tự \(a^2+c^2>=2ac;b^2+c^2>=2bc\)

\(\Rightarrow a^2+b^2+a^2+c^2+b^2+c^2>=2ab+2ac+2bc\Rightarrow2\left(a^2+b^2+c^2\right)>=2\left(ab+ac+bc\right)\)

\(\Rightarrow a^2+b^2+c^2.=ab+ac+bc\)dấu = xảy ra khi a=b=c

mà nếu \(a^2+b^2+c^2-ab-ac-bc=0\Rightarrow a^2+b^2+c^2=ab+ac+bc\Rightarrow a=b=c\)

th1:a+b+c=0

\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

\(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}=\frac{ab^2}{a^2+b^2-\left(-c\right)^2}+\frac{bc^2}{b^2+c^2-\left(-a\right)^2}+\frac{ca^2}{c^2+a^2-\left(-b\right)^2}\)

\(=\frac{ab^2}{a^2+b^2-\left(a+b\right)^2}+\frac{bc^2}{b^2+c^2-\left(b+c\right)^2}+\frac{ca^2}{c^2+a^2-\left(c+a\right)^2}\)

\(=\frac{ab^2}{a^2+b^2-a^2-2ab-b^2}+\frac{bc^2}{b^2+c^2-b^2-2bc-c^2}+\frac{ca^2}{c^2+a^2-c^2-2ac-a^2}\)

\(=\frac{ab^2}{-2ab}+\frac{bc^2}{-2bc}+\frac{ca^2}{-2ac}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{a+b+c}{-2}=\frac{0}{-2}=0\)

th2:a=b=c tự lm nhá

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

$\frac{1}{c}=-(\frac{1}{a}+\frac{1}{b})< 0$ do $a,b>0$

$\Rightarrow c< 0$

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0$

Từ đây ta có:

\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)

\(=a+b+2c+2\sqrt{ab+bc+ac+c^2}=a+b+2c+2\sqrt{c^2}\)

\(=a+b+2c+2|c|=a+b+2c+2(-c)=a+b\)

\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) (do \(\sqrt{a+c}+\sqrt{b+c}\geq 0\))

Ta có đpcm.

1 tháng 8 2023

a)  A=x^2+4x+4=(x+2)^2.

Giờ ta tính giá trị của đa thức A với x=98:

A=(98+2)^2=100^2=10000

b)  B=x^3+9x^2+27x+27=(x+3)^3.

Thế x=-103 => (-103+3)^3=-1000000

c) Tách C = a⋅b−a⋅c+2⋅c−2⋅b rồi kết hợp lại thành C=(a−2)⋅b+(2−a)⋅c.

Thế a,b,c vào được vậy 

C=(2−2)⋅1.007+(2−2)⋅(−0.006) =0

d) Bài này khó quá mà tui nghĩ là đưa mấy cặp (2023^2-2022^2) thành dạng a^2-b^2=(a-b)(a+b) á

 

d: D=(2023^2-2022^2)+(2021^2-2020^2)+...+(3^2-2^2)+(1^2-0^2)

=2023+2022+...+3+2+1+0

=2023*2024/2=2047276

26 tháng 12 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

5 tháng 1 2022

Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?

 
24 tháng 2 2023

Đề bài mình sửa lại : A = a2021 - b2021 + c2021 - (a - b + c)2021 

Ta có \(\sqrt{a}-\sqrt{b}+\sqrt{c}=\sqrt{a-b+c}\)

\(\Leftrightarrow a+b+c-2\sqrt{ab}-2\sqrt{bc}+2\sqrt{ca}=a-b+c\)

\(\Leftrightarrow b-\sqrt{ab}-\sqrt{bc}+\sqrt{ca}=0\)

\(\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)-\sqrt{c}\left(\sqrt{b}-\sqrt{a}\right)=0\)

\(\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right).\left(\sqrt{b}-\sqrt{a}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=c\\b=a\end{matrix}\right.\)

Với b = c 

A = a2021 - b2021 + c2021 - (a - b + c)2021 

= a2021 - a2021

= 0 

Tương tự với b = a ta được A = 0

Vậy A = 0 

24 tháng 2 2023

Nếu không sửa thì 

P = a2021 - (a + 2b)2021 khi b = c

hoặc P = c2021 - (2b + c)2021  khi b = a

và giá trị của P còn phụ thuộc vào a,b,c  , không phải là hằng số .