Cho P là số nguyên tố>3. Chứng minh: (p+23).(p+25) chia hết cho 24.
Giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3 nên p lẻ
=> p+2015 và p+2017 là 2 số chẵn liên tiếp
=> (p+2015)(p+2017) chia hết cho 8(1)
mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2
Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)
Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)
Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24
=> ĐPCM
tìm x sao cho 2x + 2x+1 + 2x+2 + 2x+3 + ... +2x+2015 = 22017 - 2
giải giúp mình với
Nếu p nguyên tố mà > 3 =>p= 3k+1 hoặc p=3k+2
nếu p=3k+1 => p+2=3k+1+2=3k+3 mà 3k+3 > 3 => p+2 là hợp số ( loại )
=> p=3k+2 . Nếu p=3k+2 => p+1=3k+1+2=3k+3 =>p+1 là hợp số
=> p+1 chia hết cho 2 ma (2;3)=1 => p+1 chia hết cho 6
P là số nguyên tố lớn hơn 3 \(\Rightarrow\) P không chia hết cho 2 và 3.
Ta có: P không chia hết cho 2
\(\Rightarrow\)P-1 và P+1 là 2 số chẵn liên tiếp \(\Rightarrow\) (P-1)(P+1) chia hết cho 8 (1)
Mặt khác: P không chia hết cho 3
Nếu P=3k+1 thì P-1=3k chia hết cho 3 \(\Rightarrow\)(P-1)(P+1) chia hết cho 3
Tương tự: Nếu P=3k+2 thì P+1=3k+3 chia hết cho 3 \(\Rightarrow\) (P-1)(P+1) chia hết cho 3 (2)
Từ (1) và (2) \(\Rightarrow\)(P-1)(P+1) chia hết cho 8 và 3
Mà 3 và 8 là hai số nguyên tố cùng nhau
\(\Rightarrow\)(P-1)(P+1) chia hết cho 24.
Bài kia cũng tương tự như thế này thôi!