Chứng minh rằng với mọi giá trị của tham số m, hàm số
y = x3 – mx2 – 2x + 1
luôn luôn có một điểm cực đại và một điểm cực tiểu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D = R
+ y’’ = 6x – 2m.
⇒ là một điểm cực đại của hàm số.
⇒ là một điểm cực tiểu của hàm số.
Vậy hàm số luôn có 1 điểm cực đại và 1 điểm cực tiểu.
y= x3-mx2-2x+1
y'=3x^2-2mx-2
PT y'=3x^2-2mx-2=0 có delta'=m^2+6>0 với mọi m
nên có 2 nghiệm phân biệt.
vậy hs có 1 cực đại và 1 cực tiểu
y’ = 3x2 – 2mx – 2 , ∆’ = m2 + 6 > 0 nên y’ = 0 có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.
Vậy hàm số luôn có một cực đại và một cực tiểu.
Chọn A
[Phương pháp trắc nghiệm]
y ' = 3 x 2 + 2 m x + 7
Bấm máy tính
Đường thẳng đi qua 2 điểm cực trị là
Để đồ thị hàm số có 2 điểm cực trị thì
Khi đó, do a = 1 3 > 0 nên hàm số y = 1 3 x 3 - m x 2 + m + 2 x có cực trị và giá trị của hàm số tại các điểm cực đại, điểm cực tiểu nhận giá trị dương . Đồ thị hàm số cắt trục hoành tại 1 điểm duy nhất là x = 0 1 và hai cực trị x 1 ; x 2 x 1 < x 1 thỏa mãn: 0 < x 1 < x 2 2
Ta có:
hoặc là vô nghiệm hoặc là có nghiệm kép x = 0
Kết hợp điều kiện ta có:
m ∈ 2 - 2 7 3 ; - 1 ∪ 2 ; 2 + 2 7 3
Chọn: A
Chọn A
Ta có y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 ) .
Hàm số có hai cực trị => y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> ( 3 m ) 2 - 3 . 3 ( m 2 - 1 ) > 0 <=> 9 > 0 đúng với mọi m. Ta có điểm cực đại là B(m - 1; -2m + 2) và cực tiểu là C(m + 1; -2m - 2)
Chọn C.
Tập xác định: D = ℝ
Xét
Với m = 1, hàm số đã cho trở thành:
Hàm số này đạt cực tiểu tại điểm A(0;-1) nên không thỏa mãn yêu cầu bài toán.
Với m = -1, hàm số đã cho trở thành:
Hàm số này đạt cực đại tại điểm B(0;-3) nên thỏa mãn yêu cầu bài toán.
Xét m ≠ ± 1 ta có
Xét y' = 0
Với m = 0 phương trình y' = 0 có nghiệm bồi 3 và nên hàm số đạt cực đại tại điểm C(0;-1) nên thỏa mãn yêu cầu bào toán.
Với m ≠ 0 hàm số đã cho chỉ có một điểm cực đại và không có điểm cực tiểu khi và chỉ khi
y’ = 3x2 – 2mx – 2 , ∆’ = m2 + 6 > 0 nên y’ = 0 có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.
Vậy hàm số luôn có một cực đại và một cực tiểu.