Cho tam giac ABC nội tiếp (O). Kẻ 2 đường cao BE&CF. CMR : OA vuông góc với EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ đường kính AK của đường tròn (O).
Chứng minh tứ giác BHCK là hình bình hành.
Gọi M là giao điểm của BC và HK suy ra M là trung điểm của BC nên OM là đường trung bình của tam giác AHK nên OM vuông góc với BC và AH = 2.OM
AH.BC=2.OM.BC = 4SBOC. Tương tự BH.AC=4SAOC, CH.AB=4SAOB
Cộng 3 đẳng thức được đpcm
a: góc AEB=góc AHB=90 độ
=>ABHE nội tiếp
b: góc HED=góc ABC=1/2*sđ cung AC=góc ADC
=>HE//CD
Xét tứ giác AEDB có
\(\widehat{AEB}=\widehat{ADB}=90^0\)
=>AEDB là tứ giác nội tiếp đường tròn đường kính AB
=>A,E,D,B cùng thuộc đường tròn đường kính AB
Tâm I của đường tròn này là trung điểm của AB
a: Sửa đề: BFEC
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
góc BAK=góc BAD+góc DAK
góc DAC=góc DAK+góc CAK
mà góc BAD=góc CAK
nên góc BAK=góc DAC
Xét ΔABK vuông tại B và ΔADC vuông tại D có
góc BAK=góc DAC
=>ΔABK đồng dạng với ΔADC
Hình vẽ:
Lời giải:
Kẻ $Ax$ là tiếp tuyến của $(O)$
Khi đó: $Ax\perp OA(1)$
Mặt khác:
Dễ thấy tứ giác $BFEC$ có $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.
$\Rightarrow \widehat{AFE}=\widehat{ACB}$
Mà: $\widehat{ACB}=\widehat{xAB}$ (tính chất góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)
Suy ra $\widehat{AFE}=\widehat{xAB}$. Mà 2 góc này ở vị trí so le trong nên $Ax\parallel EF(2)$
Từ $(1);(2)\Rightarrow OA\perp EF$ (đpcm)