K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

suy ra A=-1^1+2+3+....+2014

Ta có tổng 1+2+3+.....+2014

Nếu tổng 1+2+3+...+2014 chia hết cho 2 suy ra A=1

Nếu tổng 1+2+3+...+2014không chia hết cho 2 suy ra A=-1

tổng 1+2+3+.....+2014 có số hạng là: (2014-1)+1=2014(số hạng)

tổng 1+2+3+.....+2014 là:

   (2014+1).2014:2=2029105

Vì 2029105 không chia hết cho 2 suy ra A=-1

24 tháng 10 2019

\(A=2x^2+10x-1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)

\(=2\left[\left(x^2+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)(Vì \(\left(x+\frac{5}{2}\right)^2\ge0\))

Dấy " = " xảy ra khi :

\(x+\frac{5}{2}=0\)

\(\Leftrightarrow x=\frac{-5}{2}\)

Vậy GTNN của A là \(\frac{-27}{2}\)khi \(x=\frac{-5}{2}\)

          Hk tốt ~

24 tháng 10 2019

A=2x2+10x-1

A=2(x2+5x-\(\frac{1}{2}\))

A=2[x2+2x*\(\frac{5}{2}\)+(\(\frac{5}{2}\))2-(\(\frac{5}{2}\))2-\(\frac{1}{2}\)]

A=2[(x+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]

A=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)

Ta có: 2(x+\(\frac{5}{2}\))2≥0

⇒ 2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\frac{-27}{2}\)

⇒ Amin=\(\frac{-27}{2}\) khi x+\(\frac{5}{2}\)=0⇒x=\(\frac{-5}{2}\).

Hơi dài nhưng đầy đủ nha!!!!!

24 tháng 10 2019

cảm ơn ạ

a) Vì với mọi giá trị nguyên của x nên

Dấu “=” xảy ra khi x2 = 0 hay x = 0.

Vậy A đạt giá trị nhỏ nhất 2 021 tại x = 0.

b) Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.

Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.

Do đó với mọi giá trị nguyên của x.

Suy ra với mọi giá trị nguyên của x.

Dấu “=” xảy ra khi x22 = 0 và x20 = 0 hay x = 0.

Vậy B đạt giá trị lớn nhất bằng 2 022 khi x = 0. 

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

25 tháng 10 2019

\(A=x^2+4x+100\)

\(A=x^2+2.x.2+2^2+96\)

\(A=\left(x+2\right)^2+96\)

           \(\left(x+2\right)^2+96\le0\)

           \(\left(x+2\right)^2+96\le96\)

    \(\Leftrightarrow A\le96\)

\(A_{min}\Leftrightarrow A=10\)

Dấu "=" xảy ra : \(\left(x+2\right)^20\)

                             \(x+2=0\)

                             \(x=-2\)

     

25 tháng 10 2019

Thay hộ mik cái dấu \(\le\)thành dấu \(\ge\)vs ak

10 tháng 2 2016

đây ko phải lớp 4 mà 5 

nếu **** mik sẽ giải trình bày luôn

10 tháng 2 2016

1881 duyệt đi

25 tháng 10 2019

Bài 1:Tìm giá trị nhỏ nhất

A= x2+4x+100

A= (x\(^2\)+4x+4)+96

A= (x\(^2\)+2.x.2+2\(^2\))+96

A= (x+2)\(^2\)+96

Vì (x+2)\(^2\)0 x

(x+2)\(^2\)+96 ≥ 96 x

Vậy min A = 96 ⇔ x+2=0

⇔ x = -2

25 tháng 10 2019

B1 có bạn làm rồi

B2, B=-2.(x\(^2\)-3x+2)

=-2.(x\(^2\)-2.\(\frac{3}{2}\)x+\(\frac{9}{4}\)+2-\(\frac{9}{4}\))

=-2.[(x-\(\frac{3}{2}\))\(^2\)-\(\frac{1}{4}\)]

=-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)

Có -2.(x-\(\frac{3}{2}\))\(^2\)≤0∀x

⇒-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)\(\frac{1}{2}\)∀x

Dấu = xảy ra⇔x=\(\frac{3}{2}\)

GTLN của B=\(\frac{1}{2}\)