Cho hình hộp ABCD.A'B'C'D'. Xác định điểm M trên đường chéo AC và điểm N trên đường chéo C'D sao cho MN//BD'. Khi đó, hãy tính tỉnh số \(\frac{MN}{BD'}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hic, nghĩ mãi ko thể sử dụng cách dựng hình thông thường được. Phải quay về cách sử dụng vecto mặc dù ghét cách này vì phải tính nhiều (nhưng mà nó dễ :D)
Đặt \(\overrightarrow{BA}=a;\overrightarrow{BC}=\overrightarrow{b};\overrightarrow{BB'}=\overrightarrow{c}\)
Giả sử \(\overrightarrow{AM}=x.\overrightarrow{AC}\) ; \(\overrightarrow{BN}=y.\overrightarrow{BD'}\)
Ta có: \(\overrightarrow{DI}=\overrightarrow{DA}+\overrightarrow{AI}=-\overrightarrow{b}+\dfrac{1}{2}\overrightarrow{c}\)
\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}=-x.\overrightarrow{AC}+\overrightarrow{AB}+y.\overrightarrow{BD'}=-x.\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{AB}+y.\left(\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}\right)\)
\(=\left(x+y-1\right)\overrightarrow{BA}+\left(y-x\right)\overrightarrow{BC}+y.\overrightarrow{BB'}=\left(x+y-1\right)\overrightarrow{a}+\left(y-x\right)\overrightarrow{b}+y.\overrightarrow{c}\)
MN và DI song song khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y-1=0\\\dfrac{y-x}{-1}=\dfrac{y}{\dfrac{1}{2}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x=3y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy M thuộc đoạn AC sao cho \(AM=\dfrac{3}{4}AC\) \(\Rightarrow\dfrac{AM}{MC}=3\)
N thuộc đoạn BD' sao cho \(BN=\dfrac{1}{4}BD'\)
Phí mất 15ph kẻ kẻ vẽ vẽ dựng dựng, quay qua tính tay bằng vecto mất 30s =))))
Đáp án B
Xét phép chiếu song song lên mặt phẳng A ' B ' C ' D ' theo phương chiếu B A ' .
Ta có N là ảnh của M hay N = B ' D ' ∩ A C '
Do đó ta xác định M, N như sau:
Trên A'B' kéo dài lấy điểm K sao cho A ' K = A ' B thì A B A ' K là hình bình hành nên A K // A ' B .
Gọi N = B ' D ' ∩ K C ' . Đường thẳng qua N và song song với AK cắt AC' tại M
Ta có M, N là các điểm cần xác định.
Theo định lý Thales: M A M C ' = N K N C ' = K B ' C ' D ' = 2
Hình bình hành ACC’A có hai đường chéo là
AC’ và A’C cắt nhau tại trung điểm Mcủa mỗi đường. Tương tự, hai đường chéo BD’ và B’D cắt nhau tại trung điểm N của mỗi đường.
b) Trung điểm E của AC là hình chiếu của trung điểm M của AC’ thep phương của cạnh lăng trụ. Tương tự, trung điểm F là hình chiếu trung điểm N của đường chéo BD’ trên BD. Ta có EM //CC′ và EM = CC′/2
Mặt khác FN // DD′ và FN = DD′/2. Từ đó suy ra tứ giác MNFE là hình bình hành và ta có MN = EF.
Ta có CD = AB = 9cm; BC = AD = 8cm nên SBCD = 1 2 BC.DC = 1 2 .8.9 = 36cm2
Kẻ CH ⊥ BD tại H
Ta có: SBCD = 1 2 CH.BD; SCMN = 1 2 CH.MN mà MN = 1 3 BD
=> SCMN = 1 3 SBCD = 1 3 .36 = 12cm2
Đáp án cần chọn là: A
a: Xét tứ giác BMDN có
O là trung điểm của MN
O là trung điểm của BD
Do đó: BMDN là hình bình hành
Diện tích hình chữ nhật ABCD là:
8x9 =72 (cm^2)
S ABD= S BDC = 1/2 S ABCD
S CMN = 1/3 S BDC
Suy ra: S CMN = 1/6 S ABCD
Diện tích tam giác CMN là:
72 .1/6 =12 (cm^2)
S là kí hiệu của diện tích. Chúc bạn học tốt
Đặt : \(\overrightarrow{BA}=\overrightarrow{a},\overrightarrow{BB'}=\overrightarrow{b,}\overrightarrow{BC}=\overrightarrow{c}\)
Ta có : \(\overrightarrow{BD'}=\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\)
Do MM//BD' nên tồn tại số thực k sao cho \(\overrightarrow{MN}=k\overrightarrow{BD'}\)
hay :
\(\overrightarrow{MN}=k\overrightarrow{a}+k\overrightarrow{b}+k\overrightarrow{c}\) (1)
Đặt
\(\frac{MC}{AC}=x,\frac{C'N}{C'D}=y;x,y\in\left(0;1\right)\)
Ta có :
\(\overrightarrow{AC}=\overrightarrow{c}-\overrightarrow{a,}\overrightarrow{C'D}=\overrightarrow{a}-\overrightarrow{b,}\)
Suy ra : \(\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CC'}+\overrightarrow{C'N}\)
\(=\overrightarrow{xAC}+\overrightarrow{CC'}+\overrightarrow{yC'N}\)
\(=x\left(\overrightarrow{c}-\overrightarrow{a}\right)+\overrightarrow{b}+y\left(\overrightarrow{a}-\overrightarrow{b}\right)\)
\(=\left(y-x\right)\overrightarrow{a}+\left(1-y\right)\overrightarrow{b}+x\overrightarrow{c}\) (2)
Từ (1) và (2) suy ra :
\(k\overrightarrow{a}+k\overrightarrow{b}+k\overrightarrow{c}=\left(y-x\right)\overrightarrow{a}+\left(1-y\right)\overrightarrow{b}+x\overrightarrow{c}\)
\(\Leftrightarrow\left(k+x-y\right)\overrightarrow{a}+\left(k+y-1\right)\overrightarrow{b}+\left(k-x\right)\overrightarrow{c}=\overrightarrow{0}\) (3)
Do \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) không đồng phửng nên (3) tương đương với
\(\begin{cases}k+x-y=0\\k+y-1=0\\k-x=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{1}{3}=k\\y=\frac{2}{3}\end{cases}\)
Vậy với \(3\overrightarrow{MC}=\overrightarrow{AC,}3\overrightarrow{C'N}=2\overrightarrow{C'D}\)
thì MN//BD' và khi đó \(\frac{MN}{BD'}=\frac{1}{3}\)