K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

A B C D E F G H

22 tháng 3 2016

Giả sử tứ giác ABCD định hướng âm. Gọi \(f\) là phép quay vec tơ theo góc \(\frac{\pi}{3}\) ta có

\(\overrightarrow{EG}=\overrightarrow{AG}-\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BG}-\overrightarrow{AE}\)

suy ra \(f\left(\overrightarrow{EG}\right)=f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{BG}\right)-f\left(\overrightarrow{AE}\right)\)

                        \(=\overrightarrow{AE}+\overrightarrow{BC}-\overrightarrow{BE}\)

                        \(=\overrightarrow{AC}\)

Tương tự ta cũng chứng minh được \(f\left(\overrightarrow{HF}\right)=\overrightarrow{AC}\)

Từ đó suy ra \(\overrightarrow{EG}=\overrightarrow{HF}\)

Do đó tứ giác EGFH là hình bình hành

23 tháng 3 2016

Gọi D, E và F theo thứ tự là trung điểm các cạnh BC, CA và AB của tam giác ABC. Ta có :

\(\overrightarrow{AB'}=\overrightarrow{AE}+\overrightarrow{EB'}=\frac{1}{2}\overrightarrow{c}+\overrightarrow{EB'}\)

\(\overrightarrow{AC'}=\overrightarrow{AF}+\overrightarrow{FC'}=\frac{1}{2}\overrightarrow{b}+\overrightarrow{FC'}\)

\(\overrightarrow{AA'}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{DA'}=\frac{1}{2}\overrightarrow{b}+\frac{1}{2}\overrightarrow{c}+\overrightarrow{DA}\)

Do đó, điều phải chứng minh tương đương với 

\(\overrightarrow{AB'}=\overrightarrow{FC'}=\overrightarrow{DA'}\)

Giả sử tam giác ABC định hướng dương. Gọi \(f\) là phép quay vec tơ theo góc \(\frac{\pi}{2}\) và 

\(k=\cot\widehat{B'AC}=\cot\widehat{C'AB}\)

Ta có

\(f\left(\overrightarrow{EB'}+\overrightarrow{FC'}\right)=f\left(\overrightarrow{EB'}\right)+f\left(\overrightarrow{FC'}\right)\)

                           \(=k\overrightarrow{EA}+k\overrightarrow{AF}=\frac{k}{2}\left(\overrightarrow{b}-\overrightarrow{c}\right)\) (do \(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}=0\) )

                           \(=\frac{k}{2}\overrightarrow{CB}=k\overrightarrow{DB}=f\left(\overrightarrow{DA'}\right)\)

Suy ra điều cần chứng minh

23 tháng 3 2016

A B C C' B' A' E F D b c

 

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.Bài 4: a)Tính số đo của các góc trong...
Đọc tiếp

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.

Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.

Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.

Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.

b)Tứ giác ABCD là hình gì?Vì sao?

Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.

a)Cm: Tam giác ADB= tam giác AEC.

b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.

Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.

a) Tính số đo các góc BAD và BAC.

b)Cm tứ giác ABCD là hình thang cân.

Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^

2
12 tháng 6 2021

Bài 1:

a.

AB // CD

=> A + D = 1800 (2 góc trong cùng phía)

=> A = 1800 - D = 1800 - 540 = 1260

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 - C = 1800 - 1050 = 750

b.

AB // CD 

=> A + D = 1800 (2 góc trong cùng phía)

=> A = (1800 - 320) : 2 = 740

=> D = 1800 - 740 = 1060

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 : (1 + 2) . 2 = 1200

=> C = 1800 - 1200 = 600

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

a) Xét ΔABD có 

M là trung điểm của AB(gt)

Q là trung điểm của AD(gt)

Do đó: MQ là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔCBD có 

N là trung điểm của BC(gt)

P là trung điểm của CD(gt)

Do đó: NP là đường trung bình của ΔCBD(Định nghĩa đường trung bình của tam giác)

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

Xét ΔABC có

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AC=BD(gt)

và \(NP=\dfrac{BD}{2}\)(cmt)

nên MN=NP

Xét tứ giác MQPN có

MQ//NP(cmt)

MQ=NP(cmt)

Do đó: MQPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành MQPN có MN=NP(cmt)

nên MQPN là hình thoi(Dấu hiệu nhận biết hình thoi)

Ta có: MQPN là hình thoi(cmt)

nên MP\(\perp\)QN(Hai đường chéo của hình thoi MQPN)