Cho tam giác ABC vuông tại A tia phân giác của góc B cắt AC tại D Kẻ DH vuông góc BC .
a) So sánh BA và BH
b) So sánh DA và DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác ABD và HBD có:góc A = B=90 độ,BD cạnh chung,gócABD=HBD
Suy ra:tam giác ABD=HBD{cạnh huyền góc góc nhọn}
Suy ra:BA=BH
b.Suy ra: AD=DH
Suy ra: AD=DC
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH và DA=DH
Ta có: BA=BH
nên B nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: DA=DH
nên D nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AH
b: Ta có: AD=DH
mà DH<DC
nên AD<DC
b)
Kẻ DH⊥BC(H∈BC)DH⊥BC(H∈BC)
△ABD và △HBD có:
ˆBAD=ˆBHD=90oBD:cạnh chungˆABD=ˆHBDBAD^=BHD^=90oBD:cạnh chungABD^=HBD^
⇒△ABD = △HBD (cạnh huyền - góc nhọn)⇒AD=HD⇒△ABD = △HBD (cạnh huyền - góc nhọn)⇒AD=HD
Mà △HCD vuông tại H nên DC > DH (cạnh huyền lớn hơn cạnh góc vuông)
Từ đó suy ra DC > AD
Bạn tham khảo nhé!
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
Xét tam giác ABD và tam giác HBD có:
BD: chung.
Góc BAD=BHD=90 độ.
Góc ABD=HBD(Phân giác BD)
=> Tam giác ABD=tam giác HBD(ch-gn)
b/ Gọi giao điểm của BD và AH là O.
Xét tam giác AOB và tam giác HOB có:
BO:chung.
Góc ABO=HBO(Phân giác BD)
BA-BH(cạnh tương ứng của tam giác BAD=BHD)
=>Tam giác AOB=tam giác HOB(c-g-c)
=> Góc AOB=HOB(góc tương ứng)=90 độ
Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)
=> AH//KC
Mà BD vuông góc với AH nên BD cũng vuông góc với KC.
c/Xét tam giác ADK và tam giác HDC có:
DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)
Góc DAK=DHC=90 độ.
Góc ADK=HDC(đối đỉnh)
=> tam giác ADK=tam giác HDC(g-c-g)
=> DK=DC(cạnh tương ứng)
Mà trong tam giác vuông HDC có:
DC là cạnh huyền nên DC>DH
=> DK>DH(đpcm)
a)Xét \(\Delta BAD\) và\(\Delta BHD\):
Góc BAD = góc BHD = 90 o
Chung cạnh BC
Góc ABD = góc HBD ( BD là phân giác góc ABC)
\(\Rightarrow\Delta BAD=\Delta BHD\) (cạnh huyền - góc nhọn)
\(\Rightarrow BA=BH\) ( 2 cạnh tương ứng)
Vậy BA=BH
b) Vì \(\Delta BAD=\Delta BHD\) (chứng minh trên)
\(\Rightarrow AD=DH\) (2 cạnh tương ứng) (1)
Xét \(\Delta DCH\) có góc DHC = 90 o nên góc DHC là góc lớn nhất trong tam giác đó.
Do đó DC là cạnh lớn nhất trong \(\Delta DCH\) ( quan hệ góc và cạnh đối diện)
\(\Rightarrow DC>DH\) (2)
Từ (1)(2) \(\Rightarrow DA\)\(<\)\(DC\)
Vậy DA<DC