K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

Gọi thời gian vòi I, vòi II chảy một mình đầy bể lần lượt là x, y  x , y > 24 5

(đơn vị: giờ)

Mỗi giờ vòi I chảy được 1 x (bể), vòi II chảy được 1 y bể nên cả hai vòi chảy được  bể

Vì hai vòi ngước cùng chảy vào một bể thì sau 4 giờ 48 phút = 24 5 h bể đầy nên ta có phương trình:  1 x + 1 y = 5 25

Nếu vòi I chảy riêng trong 4 giờ, vòi II chảy riêng trong 3 giờ thì cả hai vòi chảy được 3 4 bể nên ta có phương trình  4 x + 3 y = 3 4

Suy ra hệ phương trình 

4 x + 3 4 = 3 4 1 x + 1 y = 5 24 ⇔ 4 x + 3 4 = 3 4 3 x + 3 y = 5 8 ⇔ 1 x = 1 8 1 y = 1 12 ⇔ x = 8 y = 12

(thỏa mãn)

Vậy thời gian vòi I một mình đầy bể là 8h.

Đáp án: B

Bài 9: 

Đổi \(4h48'=\dfrac{24}{5}h\)

Gọi x(giờ) và y(giờ) lần lượt là thời gian vòi I và vòi II chảy một mình đầy bể(Điều kiện: \(x>\dfrac{24}{5};y>\dfrac{24}{5}\))

Trong 1 giờ, vòi I chảy được:

\(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi II chảy được: 

\(\dfrac{1}{y}\)(bể)

Trong 1 giờ, hai vòi chảy được:

\(1:\dfrac{24}{5}=\dfrac{5}{24}\)(bể)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\)(1)

Vì khi vòi I chảy trong 4 giờ và vòi II chảy trong 3 giờ thì hai vòi chảy được \(\dfrac{3}{4}\) bể nên ta có phương trình:

\(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{6}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{1}{x}=\dfrac{5}{24}-\dfrac{1}{12}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi thứ 1 cần 8 giờ để chảy một mình đầy bể

Vòi thứ 2 cần 12 giờ để chảy một mình đầy bể

Bài 10:

Đổi \(7h12'=\dfrac{36}{5}h\)

Gọi x(giờ) và y(giờ) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: \(x>\dfrac{36}{5};y>\dfrac{36}{5}\))

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người làm được: \(1:\dfrac{36}{5}=\dfrac{5}{36}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\)(1)

Vì khi người thứ nhất làm trong 4 giờ và người thứ hai làm trong 3 giờ thì được 50% công việc nên ta có phương trình:

\(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{9}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=18\\\dfrac{1}{x}=\dfrac{5}{36}-\dfrac{1}{18}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=18\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thứ nhất cần 12 giờ để hoàn thành công việc khi làm một mình

Người thứ hai cần 18 giờ để hoàn thành công việc khi làm một mình

1 tháng 2 2021

Đổi 4h48p =\(\dfrac{24}{5}h\)

Gọi thời gian vòi 1 chảy một mình đầy bể là x (x>\(\dfrac{24}{5}\))

Gọi thời gian vòi 2 chảy một mình đầy bể là y( y>\(\dfrac{24}{5}\))

Trong 1 giờ thì:

-Vòi 1 chảu được \(\dfrac{1}{x}\left(bể\right)\)

-Vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)

-Cả hai vòi chảy được \(\dfrac{5}{24}\left(bể\right)\)

⇒PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\) (1)

-Nếu vòi 1 chảy trong 4 giờ, vòi 2 chảy trong 3 giờ thì cả 2 vòi chảy được \(\dfrac{3}{4}\) bể nên ta có PT:  \(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\) (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=8\\y=12\end{matrix}\right.\) (TM)

Vậy vòi 1 chảy một mình trong 8 giờ thì đầy bể

Vậy vòi 2 chảy 1 mình trong 12 giờ thì đầy bể

 

1 tháng 2 2021

Cần giải HPT thì bảo mình @@

Mình nghĩ HPT dễ nên k giải luôn

21 tháng 3 2016

\(y=\frac{1}{x^2+\sqrt{x}}\sqrt{\frac{\int^{ }_{ }^2\vec{^2}}{ }}\)

11 tháng 9 2015

Gọi x (giờ) là thời gian vòi thứ nhất chảy một mình đầy bể (điều kiện x>3512, đổi 2 giờ 55 phút = 3512giờ)
(x+2) giờ là thời gian vòi thứ 2 chảy một mình đầy bể.
Trong một giờ vòi thứ nhất chảy được 1x bể và vòi thứ 2 chảy được 1x+2 bể. Theo bài ra ta có phương trình:
1x+1x+2=1235⇔35(x+2+x)=12x(x+2)⇔6x2−23x−35=0
Giải phương trình này ta được hai nghiệm là : x1=5,x2=−76
Đối chiếu với điều kiện ban đầu ta được:
- Thời gian vòi thứ nhất chảy một mình đầy bể là 5giờ.
- Thời gian vòi thứ hai chảy một mình đầy bể là 7 giờ.

24 tháng 10 2022

12 giờ

13 tháng 10 2016

1 giờ vòi thứ nhất chảy : 1/9 (bể nước )

1 giờ vòi thứ hai chảy  : 1/6 ( bể nước )

2 vòi chảy 1 giờ được : 1/9 + 1/6 = 5/18( bể nước )

Hai vòi cùng chảy hết số giờ thì bể đầy là : 1 : 5/18 = 18/5 ( giờ )

Đổi 18/5 giờ = 3 giờ 36 phút

Bể nước đầy lúc : 8 giờ 24 phút + 3 giờ 36 phút = 12 giờ ( lưu ý hình như ở đây ko cần chữ giờ trong ngoặc vì mik ko nhớ lắm)

                                          ĐÁP SỐ : 12 giờ

Nhớ k cho mình nha mình đang phải ôn bài mai kiểm tra 45 phút 4 môn nhưng mik vẫn trả lời .

15 tháng 10 2016

Chính xác

27 tháng 9 2015

1 giờ vòi thứ nhất chảy được :

1 : 9 = 1/9 (bể )

1 giờ vòi thứ hai chảy được :

1 : 6 = 1/6 ( bể )

1 giờ cả hai vòi chảy được :

1/9 + 1/6 = 5/18 ( bể )

Cả hai vòi cùng chảy thì mất số thời gian là :

1 : 5/18 = 18/5 = \(3\frac{3}{5}\)giờ = 3 giờ 36 phút

Do đó hai vòi cùng chảy lúc 8 giờ 24 phút thì đầy lúc :

3 giờ 36 phút + 8 giờ 24 phút = 12 ( giờ )

                 Đáp số : 12 giờ

27 tháng 9 2015

Chờ tí , làm xong bài tập anh đã