K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

Chép sai đề bài bạn ơi, phần mẫu số phải là a2+a-1 chứ. Coi lại nhé bạn.

17 tháng 3 2016

+1 nhé, ở mấu đấy.

12 tháng 3 2023

Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )

=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (  

12 tháng 3 2023

đấy nè Vì ƯCLN ( n+1;2n+3 ) = 1 nên n+1/2n+3 tối giản

 

25 tháng 7 2016

a) với a là số nguyên thì phân số a/74 tối giản khi n không thuộc ước và bội của 74

b) với b là số nguyên thì phân số b/225 tối giản khi b không thuộc ước và bội của 225

c) 3n/3n + 1 với 3n và 3n + 1 là hai số tự nhiên liên tiếp nên không chia được bất kì số nào khác 1

24 tháng 7 2016

a) với a là số nguyên thì phân số a/74 tối giản khi n không thuộc ước và bội của 74

b) với b là số nguyên thì phân số b/225 tối giản khi b không thuộc ước và bội của 225

c) 3n/3n + 1 với 3n và 3n + 1 là hai số tự nhiên liên tiếp nên không chia được bất kì số nào khác 1

12 tháng 5 2017

\(P=\frac{a^3+2a}{a^4+3a^2+1}\)

Đặt TS = \(a^3+2a\),  MS = a4 + 3a2 + 1, \(UCLN\left(TS;MS\right)=d\), ta chứng tỏ d = 1.

Thật vậy: 

Do \(TS⋮d\Rightarrow a.TS⋮d\Rightarrow a\left(a^3+2a\right)⋮d\Rightarrow a^4+2a^2⋮d\)

Vậy thì  \(\left(MS-a.TS\right)⋮d\Rightarrow\left(a^4+3a^2+1-a^4-2a^2\right)⋮d\)

\(\Rightarrow\left(a^2+1\right)⋮d\)

\(TS=a\left(a^2+2\right)=a\left(a^2+1+1\right)=\left[a\left(a^2+1\right)+a\right]⋮d\)

Do \(\left(a^2+1\right)⋮d\left(cmt\right);TS⋮d\Rightarrow a⋮d\)

Mà nếu \(a⋮d\Rightarrow a^2⋮d\)

Vậy thì \(\left(a^2+1\right)-a^2=1⋮d\Rightarrow d=1\)

Vậy phân số trên tối giản.

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

5 tháng 2 2016

Gọi UCLN(a2+a-1;a2+a+1)=d

Ta có:a2+a-1 chia hết cho d

         a2+a+1 chia hết cho d

=>(a2+a+1)-(a2+a-1) chia hết cho d

=>2 chia hết cho d

=>d\(\in\)Ư(2)={1,2}

Mà a2+a+1=a.(a+1)+1 là số lẻ nên không chia hết cho 2

Do đó d=1

Vậy \(\frac{a^2+a-1}{a^2+a+1}\) tối giản

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

17 tháng 10 2021

\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6

DD
14 tháng 5 2021

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
14 tháng 5 2021

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

1 tháng 4 2015

ta có: \(\frac{2a+1}{2a^2+2a}=\frac{2a+1}{2a\left(a+1\right)}\)

nhận xét: 2a  và 2a +1 là 2 số nguyên liên tiếp nên 2a và 2a + 1 không có ước chung nào khác 1; -1          (*)

gọi d = ƯCLN(2a+1; a+1) 

=> 2a+1 chia hết cho d và

     a+ 1 chia hết cho d

=> 2a+ 1 - 2(a+1) = -1 chia hết cho d => d = 1 hoặc -1 => 2a+ 1 và a+ 1 nguyên tố cùng nhau hay chúng ko có ước chung nào khác 1; -1      (**)

Từ (*)(**) => 2a + 1 và 2a.(a+ 1) nguyên tố cùng nhau => phân số đã cho là tối giản