Cho tam giác ABC có 2 trung tuyến BD và CE cắt nhau ở G, Gọi M,N là trung điểm BG, CG.
a) Chứng minh: MNDE là hình bình hành
b) Tìm điều kiện của tam giác ABC để MNDE là hình chữ nhật, hình thoi và hình vuông
c) Chứng minh: DE+MN=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hbh
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hình bình hành
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và ED=BC/2(1)
Xét ΔGBC có
M là trung điểm của BG
N là trung điểm của CG
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và MN=BC/2(2)
Từ (1) và (2) suy ra MN//DE và MN=DE
hay MNDE là hình bình hành
a, Ta có: EA=BE,BG=CG
⇒EM là đg TB của △ABG ⇒EM=\(\dfrac{AG}{2}\),EM//AG (1)
Ta có: AD=CD,GN=NC
⇒DN là đg TB của △ACG ⇒DG=\(\dfrac{AG}{2}\),DG//AG (2)
Từ (1) và (2) ⇒ DG=EM,DG//EM ⇒Tứ giác MNDE là hbh
b, Tứ giác MNDE là hcn ↔ gócMED=90độ
mà ta có EM//AG (C/m câu a) ⇒ AG⊥ED
ta có: AE=EB,AD=DC ⇒ ED là đg TB của △ABC
⇒ ED//BC ⇒ AG⊥BC ⇒ AG là đg cao của △ABC
ta có BD và EC là 2 đg trung tuyên cắt nhau tại G
⇒ AG cũng là đg trung tuyến mà cũng là đg cao từ c/m trên
⇒ △ABC cân tại A
Vậy ...
TL:
a,Glà trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
^HT^
Không trả lời được thì đừng có nhiều lời
hình đây
còn lại mk ko bít lm