Tìm m để 2 phương trình : 3mx - 1 = 5m - x và m - x = 3mx + 1 có cùng 1 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x-1)(x+1)-(x+2)2=3
<=> x2-1-x2-4x-4=0
<=> -4x=8
<=> x=-2
Để phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3 hay x=-6
Ta có:
6 x (-6)-5m=3+3m(-6)
<=> -5m+18m=39
<=> 13m=39
<=. m=3
Vậy với m=3 thì phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3
Ta có:
\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)^2=3\)
\(\Leftrightarrow4x+8=0\Leftrightarrow x=2\)
Ta lại có
\(6x-5m=3+3mx\)
\(\Leftrightarrow x\left(6-3m\right)=3+5m\)
\(\Leftrightarrow x=\frac{3+5m}{6-3m}\)
Vì pt này có nghiệm gấp 3 lần pt trên nên
\(\frac{3+5m}{6-3m}=6\)
\(\Leftrightarrow23m=33\Leftrightarrow m=\frac{33}{23}\)
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
bpt (1) : x> \(\frac{2m}{3m-1}\); bpt (2) : x > \(\frac{m}{2}\)
de 2 bpt co cung tap nghiem thi \(\frac{2m}{3m-1}\)= \(\frac{m}{2}\)(3) voi dk m # \(\frac{1}{3}\)
giai pt (3) tim duoc m= 0 , m = \(\frac{5}{3}\)thoa dieu kien m # \(\frac{1}{3}\)
Xét pt (1): \(6x-5m=3+3mx\Leftrightarrow\left(3m-6\right)x=-5m-3\)
Để pt có nghiệm \(\Rightarrow m\ne2\) khi đó \(x=\dfrac{-5m-3}{3m-6}\)
Xét pt (2): \(\left(x+1\right)\left(x-1\right)-\left(x+2\right)^2=3\)
\(\Leftrightarrow x^2-1-x^2-4x-4=3\Rightarrow4x=-8\Rightarrow x=-2\)
Để nghiệm của (1) gấp 2 lần nghiệm của (2)
\(\Rightarrow\dfrac{-5m-3}{3m-6}=-2.2=-4\)
\(\Leftrightarrow-5m-3=-12m+24\Rightarrow m=\dfrac{27}{7}\)
Phương trình (m – 1) x 2 + 3mx + 2m + 1 = 0 (a = m – 1; b = 3m; c = 2m + 1)
Ta có
∆ ' = ( 3 m ) 2 – 4 . ( 2 m + 1 ) . ( m – 1 ) = m 2 – 4 m + 4 = ( m – 2 ) 2
Gọi x 1 ; x 2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có
P = x 1 . x 2 = 2 m + 1 m − 1
Phương trình có hai nghiệm cùng dấu khi a ≠ 0 Δ ≥ 0 P > 0 ⇔ m − 1 ≠ 0 m − 2 2 ≥ 0 ( l u o n d u n g ) 2 m + 1 m − 1 > 0
⇔ m ≠ 1 2 m + 1 m − 1 > 0
Ta có
2 m + 1 m − 1 > 0 ⇔ 2 m + 1 > 0 m − 1 > 0 2 m + 1 < 0 m − 1 < 0 ⇔ m > − 1 2 m > 1 m < − 1 2 m < 1 ⇔ m > 1 m < − 1 2
Vậy m > 1 m < − 1 2 là giá trị cần tìm
Đáp án: D
\(Pt\left(1\right)\): \(3mx-1=5m-x\) \(\Leftrightarrow\) \(3mx+x=5m+1\) \(\Leftrightarrow\) \(\left(3m+1\right)x=5m+1\) \(\Leftrightarrow\) \(x=\frac{5m+1}{3m+1}\)
\(Pt\left(2\right)\) : \(m-x=3mx+1\) \(\Leftrightarrow m-1=3mx+x\) \(\Leftrightarrow\) \(\left(3m+1\right)x=m-1\)\(\Leftrightarrow\) \(x=\frac{m-1}{3m+1}\)
Để \(pt\left(1\right)\) và \(pt\left(2\right)\) có cùng nghiệm thì \(\frac{5m+1}{3m-1}=\frac{m-1}{3m+1}\)\(\Leftrightarrow\)\(5m+1=m-1\)\(\Leftrightarrow\)\(4m=-2\Leftrightarrow m=-\frac{1}{2}\)