K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

Nếu \(\frac{a}{b}\)\(\frac{a+n}{b+n}\) nhé bạn 

14 tháng 3 2016

Xét 3 trường hợp, a/b=1;a/b>1;a/b<1

Rồi trong mỗi trường hợp bạn quy đồng mẫu để chỉ ra p/s nhỏ hơn. Mình ko có nhiều thời gian nên chỉ nói vậy thôi, có gì không hiểu nhắn lại cho mình.

27 tháng 6 2017

a + m b + m = a + m . b b + m . b = a b + m b b + m . b ; a b = a b + m b + m . b = a b + a m b + m . b

Do  a > b ⇒ a m > b m ⇒ a b + m b > a b + a m ⇒ a + m b + m > a b

25 tháng 3 2016

bằng nhau là cái chắc

22 tháng 5 2019

xét hiệu

\(A=\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2}{ab}-\frac{2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge2\)

vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

22 tháng 5 2019

\(A=\frac{a}{b}+\frac{b}{a}\)

\(\Leftrightarrow A=\frac{a^2}{ab}+\frac{b^2}{ab}\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\)

\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}=\frac{a^2-2ab+b^2}{ab}\) (hằng đẳng thức)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\) ; Bình phương luôn dương => Tử dương (1)

TH1: a và b âm => mẫu dương + (1)=> A>=2 . Ngoại lệ Tử bé hơn mẫu => A<2

TH2: a âm và b dương => mẫu âm + (1) => A<2

TH3  : a dương và b âm => mẫu âm +(1) => A<2

31 tháng 3 2017

Vì a<b => \(\frac{a+n}{b+n}>\frac{a}{b}\)

31 tháng 3 2017

Rõ hơn đi bạn 

15 tháng 9 2017

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

11 tháng 7 2019

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Lời giải:

Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$

$\Rightarrow {a}{b}>\frac{a+n}{b+n}$

Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$

$\Rightarrow {a}{b}=\frac{a+n}{b+n}$

Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$

$\Rightarrow {a}{b}<\frac{a+n}{b+n}$

 

14 tháng 2 2016

bai toan nay kho