K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( c - a )2

<=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2

<=> a2 + b2 + c2 - 2ab - 2bc - 2ca = 0 ( bớt a2 + b2 + c2 ở cả hai vế )

<=> a2 + b2 + c2 - 2( ab + bc + ca ) = 0

<=> a2 + b2 + c2 - 2.9 = 0

<=> a2 + b2 + c2 - 18 = 0

<=> a2 + b2 + c2 = 18

Xét ( a + b + c )2 ta có :

( a + b + c )2 = a2 + b2 + c2 + 2ab + 2bc + 2ca 

                     = ( a2 + b2 + c2 ) + 2( ab + bc + ca )

                     = 18 + 2.9

                     = 18 + 18 = 36

=> ( a + b + c )2 = 36

=> a + b + c = 6 ( do a, b, c là các số dương )

NV
30 tháng 8 2021

\(a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự và cộng lại:

\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)

\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)

NV
31 tháng 1 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow x+y+z=3\)

\(K=\dfrac{z^3}{x^2+z^2}+\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}\)

Ta chứng minh BĐT phụ sau: \(\dfrac{x^3}{x^2+y^2}\ge\dfrac{2x-y}{2}\)

Thật vậy, BĐT tương đương:

\(2x^3\ge2x^3-x^2y+2xy^2-y^3\)

\(\Leftrightarrow y\left(x-y\right)^2\ge0\) (đúng)

Tương tự: \(\dfrac{y^3}{y^2+z^2}\ge\dfrac{2y-z}{2}\) ; \(\dfrac{z^3}{z^2+x^2}\ge\dfrac{2z-x}{2}\)

Cộng vế với vế:

\(K\ge\dfrac{x+y+z}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=\dfrac{1}{3}\)

8 tháng 2 2023

Theo đề ra, ta có:

\(a^2+b^2+c^2\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Theo BĐT Cô-si:

\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)

Ta đặt \(a^2+b^2+c^2=k\)

Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

Vì thế nên \(k\ge\dfrac{1}{3}\)

Khi đấy:

\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)

\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).