bất đẳng thức là gì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô Bé Thiên Bình Thùy Linh
Trong toán học, một bất đẳng thức (tiếng Anh:Inequality) là một phát biểu về quan hệ thứ tự giữa hai đối tượng. (Xem thêm: đẳng thức)
- (a² + b²)(c² + d²) ≥ (ac + bd)²
- Chứng minh: (a² + b²)(c² + d²) ≥ (ac + bd)² ↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)² ↔ (ad)² + (bc)² ≥ 2abcd ↔ (ad)² - 2abcd + (bc)² ≥ 0 ↔ (ad - bc)² ≥ 0
- Dấu " = " xảy ra khi
- Với hai bộ số và ta có:
- Dấu "=" xảy ra khi và chỉ khi với quy ước nếu một số nào đó (i = 1, 2, 3,..., n) bằng 0 thì tương ứng bằng 0.
- Hệ quả của bất đẳng thức Bunyakovsky ta có:
ngoài ra có thể hiểu hơn ở Hiểu rõ hơn về bất đẳng thức Bunhiacopxki - Toán cấp 3
Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!
Bất đẳng thức Cauchy là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau :
* Đối với 2 số :
\(\frac{a+b}{2}\ge\sqrt{ab}\)
* Đối với n số :
\(\frac{x_1+x_2+x_3+...+x_n}{n}\ge\sqrt[n]{x_1.x_2.x_3.....x_n}\)
Chúc bạn học tốt!
Trong toán học, bất đẳng thức AM-GM là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Tên gọi đúng của bất đẳng thức này là bất đẳng thức AM-GM. Bất đẳng thức AM-GM là một bất đẳng thức cơ bản kinh điển quan trọng nhất của toán học sơ cấp, vì nó đã có khá nhiều cách chứng minh được đưa ra, hàng chục mở rộng, hàng chục kết quả chặt hơn đăng trên các diễn đàn toán học. Phần này tôi xin giới thiệu một kết quả chặt hơn bất đẳng thức AM-GM khác được suy ra từ chính cách chứng minh mới bất đẳng thức AM-GM (Cauchy - Cô-si).
# Aeri #
Ta có: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)(Vì BĐT Cauchy chỉ áp dụng cho 2 số dương)
\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
Trong toán học, một bất đẳng thức (tiếng Anh:Inequality) là một phát biểu về quan hệ thứ tự giữa hai đối tượng. (Xem thêm: đẳng thức)
Ký hiệu có nghĩa là a nhỏ hơn b và Ký hiệu có nghĩa là a lớn hơn b.
Những quan hệ nói trên được gọi là bất đẳng thức nghiêm ngặt; ngoài ra ta còn có
có nghĩa là a nhỏ hơn hoặc bằng b và có nghĩa là a lớn hơn hoặc bằng b.
Người ta còn dùng một ký hiệu khác để chỉ ra rằng một đại lượng lớn hơn rất nhiều so với một đại lượng khác.
Ký hiệu a >> b có nghĩa là a lớn hơn b rất nhiều.
Các ký hiệu a, b ở hai vế của một bất đẳng thức có thể là các biểu thức của các biến. Sau đây ta chỉ xét các bất đẳng thức với các biến nhận giá trị trên tập số thực hoặc các tập con của nó.
Nếu một bất đẳng thức đúng với mọi giá trị của tất cả các biến có mặt trong bất đẳng thức, thì bất đẳng thức này được gọi là bất đẳng thức tuyệt đối hay không điều kiện. Nếu một bất đẳng thức chỉ đúng với một số giá trị nào đó của các biến, với các giá trị khác thì nó bị đổi chiều hay không còn đúng nữa thì nó được goị là một bất đẳng thức có điều kiện. Một bất đẳng thức đúng vẫn còn đúng nếu cả hai vế của nó được thêm vào hoặc bớt đi cùng một giá trị, hay nếu cả hai vế của nó được nhân hay chia với cùng một số dương. Một bất đẳng thức sẽ bị đảo chiều nếu cả hai vế của nó được nhân hay chia bởi một số âm.
Hai bài toán thường gặp trên các bất đẳng thức là
Các mệnh đề dạng "a < b", "a > b", "a ≤ b" và "a ≥ b" được gọi là bất đẳng thức. Trong đó các kí hiệu a và b có thể là các biểu thức của các biến.
Các bất đẳng thức dạng: "a < b" và "a > b" được gọi là các bất đẳng thức nghiêm ngặt, còn các bất đẳng thức dạng: "a ≤ b" và "a ≥ b" được gọi là bất đẳng thức không nghiêm ngặt.
Một bất đẳng thức có thể đúng, có thể sai. Việc chứng minh một bất đẳng thức nào đó là đúng với các giá trị của các biến thuộc một tập hợp cho trước được gọi là bài toán chứng minh bất đẳng thức.