K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

Đáp án

Bài giải qua 3 bước như sau:

Bước 1: Xét mẫu số của số hạng tổng quát trong tổng trên:

      S = 1 + 2 + ... + (n - 1) + n                     ( * )

      Khi viết S theo thứ tự ngược lại la có:

      S = n + (n - 1) + ... + 2 + 1                     ( ** )

     Cộng vế với vế của ( * ) và ( ** ) ta có:

     S + S = [1 + n] + [2 + (n - 1)] + ... + [(n - 1) + 2] + [n + 1]

     2 . S = [n + 1]   + [n + 1] +   . . .    + [n + 1]       + [n + 1]     (Tổng có n số hạng [n + 1] )

     2 . S = n.(n + 1)

  => S = n.(n + 1)/2

  => Số hạng tổng quát của tổng đã cho là:

     

Bước 2: Ta có nhận xét:

    

  =>                       ( *** )

Bước 3:  Thay n = 1, 2, ... vào ( *** ) ta được các đẳng thức tương ứng:

     

     

     

     .   .   .   

Cộng các vế với nhau ta được:

        

  

  

  

Vậy tổng đã cho có kết quả bằng 2.

10 tháng 3 2016

Đặng Thị Thùy Linh copy đáp án trên OLM

bn có thể vào mục "toán vui mỗi tuần" của OLM
 

9 tháng 11 2015

Nhìu người đăng câu này vậy,đến bao giờ mới hết người đăng câu này hả Nguyễn Mai Linh Chi

NV
2 tháng 5 2021

Tổng đã cho là tổng cấp số nhân lùi vô hạn với \(u_1=1\) ; \(q=\dfrac{1}{3}\)

Do đó: \(S=\dfrac{u_1}{1-q}=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}\)

a: \(S=\dfrac{\dfrac{2}{3}}{\dfrac{5}{4}}=\dfrac{8}{15}\)

b: 1,(6)=5/3

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(S = \frac{{{u_1}}}{{1 - q}} = \frac{{\frac{2}{3}}}{{1 - \frac{{ - 1}}{4}}} = \frac{8}{{15}}\)

b) \(1,\left( 6 \right) = \frac{5}{3}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{3}\) nên

\(1 + \frac{1}{3} + {\left( {\frac{1}{3}} \right)^2} + ... + {\left( {\frac{1}{3}} \right)^n} + ... = \frac{1}{{1 - \frac{1}{3}}} = \frac{3}{2}\).

NV
17 tháng 1 2021

\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)

\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)

\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)

\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)

15 tháng 3 2022

Lim 3.4n-2.13n/5n+6.13n

1) Ta có: \(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1-21+x=0\)

\(\Leftrightarrow x^2-3x-20=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-20\right)=9+80=89\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3+\sqrt{89}}{2}\\x_2=\dfrac{3-\sqrt{89}}{2}\end{matrix}\right.\)

30 tháng 7 2021

1)\(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow21-x=x^2-2x+1\)

\(\Leftrightarrow x^2-x-20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)

2)\(\sqrt{8-x}+2=x\)

\(\Leftrightarrow8-x=\left(x-2\right)^2\)

\(\Leftrightarrow8-x=x^2-4x+4\)

\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

 

 

8 tháng 2 2021

\(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\q=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow S=\dfrac{1}{2}.\dfrac{1}{1+\dfrac{1}{2}}=\dfrac{1}{3}\)

NV
8 tháng 2 2021

Cấp số nhân lùi vô hạn có \(u_1=1\) và \(q=\dfrac{1}{2}\)

\(\Rightarrow S=\dfrac{u_1}{1-q}=\dfrac{1}{1-\dfrac{1}{2}}=2\)