\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/2 - 1/3 - 2/3 + 1/4 + 2/4 + 3/4 - 1/5 - 2/5 - 3/5 - 4/5 + ... + 1/10 + ...+ 9/10
A = 1/2 - ( 1/3 + 2/3) + (1/4 + 2/4 + 3/4) - ( 1/5 + 2/5 + 3/5 + 4/5) + ( 1/6 + 2/6 + ... + 5/6) - ( 1/7 + 2/7 + ... + 6/7) + ( 1/8 + 2/8 + ... + 7/8) - ( 1/9 + 2/9 + ... + 8/9)
A = 1/2 - 1 + [( 1/4 + 3/4) + 2/4] - [(1/5 + 4/5) + (2/5 + 3/5)] + [(1/6+5/6) + ( 2/6 + 4/6) + 3/6] - [(1/7 + 6/7) + (2/7 + 5/7) + (3/7 + 4/7)] + [(1/8 + 7/8) + (2/8 + 6/8) + (3/8 + 5/8) + 4/8)] - [(1/9 + 8/9) + (2/9 + 7/9) + (3/9 + 6/9) + (4/9 + 5/9)] + [(1/10 + 9/10) + ( 2/10 + 8/10) + ( 3/10 + 7/10) + ( 4/10 + 6/10) + 5/10]
A = 1/2 - 1 + ( 1 + 1/2) - 2 + ( 2 + 1/2) - 3 + ( 3 + 1/2) - 4 + ( 4 + 1/2)
A = 1/2 + 1/2 + 1/2 + 1/2 + 1/2
A = 1/2 × 5 = 5/2
Đặt A = 1/2 - 1/3 - 2/3 + 1/4 + 2/4 + 3/4 - 1/5 - 2/5 - 3/5 - 4/5 + ... + 1/10 + ...+ 9/10
A = 1/2 - ( 1/3 + 2/3) + (1/4 + 2/4 + 3/4) - ( 1/5 + 2/5 + 3/5 + 4/5) + ( 1/6 + 2/6 + ... + 5/6) - ( 1/7 + 2/7 + ... + 6/7) + ( 1/8 + 2/8 + ... + 7/8) - ( 1/9 + 2/9 + ... + 8/9)
A = 1/2 - 1 + [( 1/4 + 3/4) + 2/4] - [(1/5 + 4/5) + (2/5 + 3/5)] + [(1/6+5/6) + ( 2/6 + 4/6) + 3/6] - [(1/7 + 6/7) + (2/7 + 5/7) + (3/7 + 4/7)] + [(1/8 + 7/8) + (2/8 + 6/8) + (3/8 + 5/8) + 4/8)] - [(1/9 + 8/9) + (2/9 + 7/9) + (3/9 + 6/9) + (4/9 + 5/9)] + [(1/10 + 9/10) + ( 2/10 + 8/10) + ( 3/10 + 7/10) + ( 4/10 + 6/10) + 5/10]
A = 1/2 - 1 + ( 1 + 1/2) - 2 + ( 2 + 1/2) - 3 + ( 3 + 1/2) - 4 + ( 4 + 1/2)
A = 1/2 + 1/2 + 1/2 + 1/2 + 1/2
A = 1/2 × 5 = 5/2
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}<\frac{10}{10}=1\)
Có : \(\frac{1}{2^2}<1\)
\(\frac{1}{3^2}<1\)
\(\frac{1}{4^2}<1\)
...
\(\frac{1}{10^2}<1\)
Cộng tất cả các vế trên ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}<1\) (ĐPCM)