Cho tỉ lệ thức : a+b+c/a+b-c = a-b+c/a-b-c
Trong đó b # 0. CMR : c= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b-c/a+b-c + 2c/a+b-c = a-b-c/a-b-c + 2c/a-b-c
suy ra 2c/a+b-c = 2c/a-b-c
Dấu = xảy ra khi c=0
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)
\(\Leftrightarrow\left(b+c-b+c\right)\left(b+c+b-c\right)=0\)
\(\Leftrightarrow4bc=0\)
Do b\(\ne\) 0\(\Rightarrow c=0\)
Vậy c=0 thì thỏa tỉ lệ thức (đcpcm)
Ta có \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)(dãy tỉ số bằng nhau)
Khi đó a + b + c = a + b - c
<=> c = - c
<=> 2 x c = 0
<=> c = 0(đpcm)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
\(\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)
\(a^2+ab+ac-ab-b^2-bc-ac-bc-c^2=a^2+ab-ac-ab-b^2+bc+ac+cb-c^2\)
\(a^2-b^2-c^2-2bc=a^2-b^2-c^2+2bc\)
\(-2bc=2bc\)
mà \(b\ne0\)
thì \(-2bc;2bc\)trái dấu
vậy để \(-2bc=2bc\)thì \(c=0\)
\(< =>ĐPCM\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1.\) (T/c dãy tỷ số băng nhau)
\(\Rightarrow a+b+c=a+b-c\Rightarrow2c=0\Rightarrow c=0\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
Theo t/c dãy tỉ số=nhau,ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\frac{2b}{2b}=1\)
\(=>a+b+c=a+b-c=>c=-c=>c-\left(-c\right)=0\)
\(=>c+c=0=>2c=0=>c=0\)
Vậy c=0
Ta có:
\(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right).\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right).\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right).\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+c}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau )
vi ab = cd
=>a/b=c/d
=>a+c/b+d =a/b = c/d
=>a-c/b-d =a/b = c/d
(sgk s8 )